DOI QR코드

DOI QR Code

Historical Overview of the Effect of β-Adrenergic Agonists on Beef Cattle Production

  • Johnson, Bradley J. (Department of Animal and Food Sciences, Texas Tech University) ;
  • Smith, Stephen B. (Department of Animal Science, Texas A&M University) ;
  • Chung, Ki Yong (Hanwoo Experiment Station, National Institute of Animal Science, RDA)
  • Received : 2012.09.20
  • Accepted : 2014.03.12
  • Published : 2014.05.01

Abstract

Postnatal muscle hypertrophy of beef cattle is the result of enhanced myofibrillar protein synthesis and reduced protein turnover. Skeletal muscle hypertrophy has been studied in cattle fed ${\beta}$-adrenergic agonists (${\beta}$-AA), which are receptor-mediated enhancers of protein synthesis and inhibitors of protein degradation. Feeding ${\beta}$-AA to beef cattle increases longissimus muscle cross-sectional area 6% to 40% compared to non-treated cattle. The ${\beta}$-AA have been reported to improve live animal performance, including average daily gain, feed efficiency, hot carcass weight, and dressing percentage. Treatment with ${\beta}$-AA increased mRNA concentration of the ${\beta}_2$ or ${\beta}_1$-adrenergic receptor and myosin heavy chain IIX in bovine skeletal muscle tissue. This review will examine the effects of skeletal muscle and adipose development with ${\beta}$-AA, and will interpret how the use of ${\beta}$-AA affects performance, body composition, and growth in beef cattle.

Keywords

References

  1. Anderson, P. T., W. G. Helferich, L. C. Parkhill, R. A. Merkel, and W. G. Bergen. 1990. Ractopamine increases total and myofibrillar protein synthesis in cultured rat myotubes. J. Nutr. 120:1677-1683.
  2. Avenano-Reyes, L., V. Torres-Rodriguez, F. J. Meraz-Murillo, C. Perez-Linares, F. Figueroa-Saavedra, and P. H. Robinson. 2006. Effects of two $\beta$-adrenergic agonists on finishing performance, carcass characteristics, and meat quality of feedlot steers. J. Anim. Sci. 84:3259-3265. https://doi.org/10.2527/jas.2006-173
  3. Baxa, T. J., J. P. Hucheson, M. F. Miller, J. C. Brooks, W. T. Nichols, M. N. Streeter, D. A. Yates, and B. J. Johnson. 2010. Additive effects of a steroidal implant and zilpaterol hydrochloride on feedlot performance, carcass characteristics, and skeletal muscle messenger ribonucleic acid abundance in finishing steers. J. Anim. Sci. 88:330-337. https://doi.org/10.2527/jas.2009-1797
  4. Beermann, D. H., W. R. Butler, D. E. Hogue, V. K. Fishell, R. H. Dalrymple, C. A. Ricks, and C. G. Scanes. 1987. Cimaterol-induced muscle hypertrophy and altered endocrine status in lambs. J. Anim. Sci. 65:1514-1524.
  5. Beermann, D. H. 2002. Beta-Adrenergic receptor agonist modulation of skeletal muscle growth. J. Anim. Sci. 80:E18-E23.
  6. Beckett, J. L., R. J. Delmore, G. C. Duff, D. A. Yates, D. M. Allen, T. E. Lawrence, and N. Elam. 2009. Effects of zilpaterol hydrochloride on growth rates, feed conversion, and carcass traits in calf-fed Holstein steers. J. Anim. Sci 87:4092-4100. https://doi.org/10.2527/jas.2009-1808
  7. Bergen, W. G., S. E. Johnson, D. M. Skjaerlund, A. S. Babiker, N. K. Ames, R. A. Merkel, and D. B. Anderson. 1989. Muscle protein metabolism in finishing pigs fed ractopamine. J. Anim. Sci. 67:2255-2262.
  8. Bischoff, R. 1986. A satellite cell mitogen from crushed adult muscle. Dev. Biol. 115:140-147. https://doi.org/10.1016/0012-1606(86)90235-6
  9. Bloomberg, B. D., G. G. Mafi, B. J. Pye, J. L. Richards, J. B. Morgan, and D. L. Vanoverbeke. 2013. Impact of helth management, health treatments, and zilpaterol hydrochloride supplementation on carcass quality, color, and palatability traits in heifers. J. Anim. Sci. 91:3465-3473. https://doi.org/10.2527/jas.2012-5559
  10. Branaman, G. A., A. M. Pearson, W. T. Magee, R. M. Griswold, and G. A. Brown. 1962. Comparison of the cutability and etaability of beef- and dairy- type cattle. J. Anim. Sci. 21:321-326.
  11. Bridge, K. Y., C. K. Smith, II, and R. B. Young. 1998. Beta-adrenergic receptor gene expression in bovine skeletal muscle cells in culture. J. Anim. Sci. 76:2382-2391.
  12. Choi, C. B., K. K. Jung, K. Y. Chung, B. S. Yang, K. B. Chin, S. W. Suh, D. H. Oh, M. S. Jeon, K. H. Baek, S. O. Lee, S. I. Kim, Y. H. Lee, D. A. Yates, J. P. Hutcheson, and B. J. Johnson. 2013. Administration of zilpaterol hydrochloride alters feedlot performance, carcass characteristics, muscle, and fat profiling in finishing Hanwoo steers. Livest. Sci. 157:435-441. https://doi.org/10.1016/j.livsci.2013.06.035
  13. Ferlay, A., C. Charret, J. Galitzky, M. Berlan, and Y. Chilliard. 2001. Effects of the perfusion of $\beta$-, $\beta2$-, or $\beta3$-adrenergic agonists or epinephrine on in situ adipose tissue lipolysis measured by microdialysis in underfed ewes. J. Anim. Sci. 79:453-462.
  14. Ferlay, A. and Y. Chilliard. 1999. Effects of the infusion of non-selective $\beta-$, and selective $\beta_1-$ or $\beta_2$-adrenergic agonists, on body fat mobilisation in underfed or overfed non-pregnant heifers. Reprod. Nutr. Dev. 39:409-421. https://doi.org/10.1051/rnd:19990401
  15. Greife, H. A., G. Klotz, and F. Berschauer. 1989. Effects of the phenethanolamine clenbuterol on protein and lipid metabolism in growing rats. J. Anim. Physiol. Anim. Nutr. 61:19-27. https://doi.org/10.1111/j.1439-0396.1989.tb00079.x
  16. Granneman, J. G. 2001. The putative beta4-adrenergic receptor is a novel state of the beta1-adrenergic receptor. Am. J. Physiol, Endocrinol. Metab. 280:E199-202.
  17. Hamby, P. L., J. R. Stouffer, and S. B. Smith. 1986. Muscle metabolism and real-time ultrasound measurement of muscle and subcutaneous adipose tissue growth in lambs fed diets containing a beta-agonist. J. Anim. Sci. 63:1410-1417.
  18. Hausdorff, W. P., M. J. Lohse, M. Bouvier, S. B. Liggett, M. G. Caron, and R. J. Lefkowitz. 1990. Two kinases mediate agonist-dependent phosphorylation and desensitization of the beta 2-adrenergic receptor. Symp. Soc. Exp. Biol. 44:225-240.
  19. Kim, Y. S., Y. B. Lee, and R. H. Dalrymple. 1987. Effect of the repartitioning agent cimaterol on growth, carcass and skeletal muscle characteristics in lambs. J. Anim. Sci. 65:1392-1399.
  20. Martinez-Navarro, J. F. 1990 Food poisoning related to consumption of illicit beta-agonist in liver. Lancet 336:1311.
  21. McMillan, D. N., B. S. Noble, and C. A. Maltin. 1992. The effect of the beta-adrenergic agonist clenbuterol on growth and protein metabolism in rat muscle cell cultures. J. Anim. Sci. 70:3014-3023.
  22. Mersmann, H. J. 1998. Overview of the effects of $\beta$-adrenergic receptor agonists on animal growth including mechanisms of action. J. Anim. Sci. 76:160-172.
  23. Mersmann, H. J. and S. B. Smith. 2005. Development of white adipose tissue lipid metabolism. In: Biology of Metabolism in Growing Animals (Eds. D. G. Burrin and H. J. Mersmann). Elsevier Science Publishers, Oxford, UK. pp. 275-302.
  24. Mills, S. E. and H. J. Mersmann. 1995. Beta-adrenergic agonists, their receptors, and growth: Special reference to the peculiarities in pigs. In: Biology of Fat in Meat Animals: Current Advances (Eds. S. B. Smith and D. R. Smith). pp 1-34. American Society of Animal Science, Champaign, IL, USA.
  25. Miller, M. F., D. K. Garcia, M. E. Coleman, P. A. Ekeren, D. K. Lunt, K. A. Wagner, M. Prochnor, T. H. Welsh, Jr., and S. B. Smith. 1988. Adipose tissue, longissimus muscle and anterior pituitary growth and function in clenbuterol-fed heifers. J. Anim. Sci. 66:12-20.
  26. McMillan, D. N., B. S. Noble, and C. A. Maltin. 1992. The effect of the $\beta$-adrenergic agonist clenbuterol on growth and protein metabolism in rat muscle cell cultures. J. Anim. Sci. 70:3014-3023.
  27. Montgomery, J. L., C. R. Krehbiel, J. J. Cranston, D. A. Yates, J. P. Hutcheson, W. T. Nichols, M. N. Streeter, R. S. Swingle, and T. H. Montgomery. 2009. Effects of dietary zilpaterol hydrochloride on feedlot performance and carcass characteristics of beef steers fed with and without monensin and tylosin. J. Anim. Sci. 87:1013-1023.
  28. Martinez-Navarro, J. F. 1990. Food poisoning related to the consumption of illicit $\beta$-agonist in liver. Lancet 336:1311.
  29. Killefer, J. and M. Koohmaraie. 1994. Bovine skeletal muscle calpastatin: Cloning, sequence analysis and steady-state mRNA expression. J. Anim. Sci. 72:606-614.
  30. Kim, Y. S., Y. B. Lee, and R. H. Dalrymple. 1987. Effect of the repartitioning agent cimaterol on growth, carcass and skeletal muscle characteristics in lambs. J. Anim. Sci. 65:1392-1399.
  31. O'Connor, R. M., W. R. Butler, K. D. Finnerty, D. E. Hogue, and D. H. Beermann. 1991. Temporal pattern of skeletal muscle changes in lambs fed cimaterol. Domest. Anim. Endocrinol. 8:549-554. https://doi.org/10.1016/0739-7240(91)90024-E
  32. Oscar, T. P. 1995. Lipid mobilization from chicken fat cells. In: Biology of Fat in Meat Animals: Current Advances (Eds. S. B. Smith and D. R. Smith). American Society of Animal Science, Champaign, IL, USA. pp. 93-112.
  33. Park, S. K., T. L. Sheffler, M. E. Spurlock, A. L. Grant, and D. E. Gerrard. 2009. Chronic activation of 5'-AMP-activated protein kinase changes myosin heavy chain expression in growing pigs. J. Anim. Sci. 87:3124-3133. https://doi.org/10.2527/jas.2009-1989
  34. Rathmann, R. J., B. C. Bernhard, R. S. Swingle, T. E. Lawrence, W. T. Nichols, D. A. Yates, J. P. Hurcheson, M. N. Streeter, J. C. Brooks, M. F. Miller, and B. J. Johnson. 2012. Effect of zilpaterol hydrochloride and days on the finishing diet on feedlot performance, carcass characteristics, and tenderness in beef heifers. J. Anim. Sci. 90:3301-3311. https://doi.org/10.2527/jas.2011-4375
  35. Ricks, C. A., R. H. Dalrymple, P. K. Baker, and D. L. Ingle. 1984. Use of a $\beta$-agonist to alter fat and muscle deposition in steers. J. Anim. Sci. 59:1247-1255.
  36. Salleras, L., A. Dominguez, E. Mata, J. L. Taberner, I Moro, and P. Salva. 1995. Epidemiologic study of an outbreak of clenbuterol poisoning in Catalonia, Spain. Public Health Rep. 110:338-342.
  37. Schiavetta, A. M., M. F. Miller, D. K. Lunt, S. K. Davis, and S. B. Smith. 1990. Adipose tissue cellularity and muscle growth in young steers fed the beta-adrenergic agonist clenbuterol for 50 days and after 78 days of withdrawal. J. Anim. Sci. 68:3614-3623.
  38. Schroeder, A. L., D. M. Polser, S. B. Laudert, and G. J. Vogel. 2003. The effect of Optaflexx on growth performance and carcass traits of steers and heifers. $Optaflexx^{TM}$ Exchange No. 1-3.
  39. Sillence, M. N., J. Hooper, G. H. Zhou, Q. Liu, and K. J. Munn. 2005. Characterization of porcine $\beta_1-$ and $\beta_2$-adrenergic receptors in heart, skeletal muscle, and adipose tissue, and the identification of an atypical $\beta$-adrenergic binding site. J. Anim. Sci. 83:2339-2348.
  40. Sillence, M. N. and M. L. Matthews. 1994. Classical and atypical binding sites for beta-adrenergic ligands and activation of adenylyl cyclase in bovine skeletal muscle and adipose tissue membranes. Br. J. Pharmacol. 111:866-872. https://doi.org/10.1111/j.1476-5381.1994.tb14818.x
  41. Sillence, M. N., G. G. Pegg, and D. B. Lindsay. 1991. Affinity of clenbuterol analogues for 2-adrenoceptors in bovine skeletal muscle and the effect of these compounds on urinary nitrogen excretion in female rats. Arch. Pharmacol. 344:442-448.
  42. Smith, D. J. and G. D. Paulson. 1997. Distribution, elimination, and residues of [14C]clenbuterol HCL in Holstein calves. J. Anim. Sci. 75:454-461.
  43. Smith, S. B., S. K. Davis, J. J. Wilson, R. T. Stone, F. Y. Wu, D. K. Garcia, D. K. Lunt, and A. M. Schiavetta. 1995. Bovine fast-twitch myosin light chain 1: cloning and mRNA amount in muscle of cattle treated with clenbuterol. Am. J. Physiol. 268:E858-865.
  44. Smith, S. B., G. E. Carstens, R. D. Randel, H. J. Mersmann, and D. K. Lunt. 2004. Brown adipose tissue development and metabolism in ruminants. J. Anim. Sci. 82:942-954.
  45. Smith, S. B. and G. E. Carstens. 2005. Ontogeny and metabolism of brown adipose tissue in livestock species. In: Biology of Metabolism in Growing Animals (Eds. D. G. Burrin and H. J. Mersmann). Elsevier Science Publishers, Oxford, UK. pp. 303-322.
  46. Strydom, P. E., L. Frylinck, J. L. Montgomery, and M. F. Smith. 2009. The comparison of three $\beta_2$-agonists for growth performance carcass characteristics and meat quality of feedlot cattle. Meat Sci. 81:557-564. https://doi.org/10.1016/j.meatsci.2008.10.011
  47. Vann, R. A., T. G. Althen, W. K. Smith, J. J. Veenhuizen, and S. B. Smith. 1998. Recombinant bovine somatotropin (rBST) administration to creep-fed beef calves increases muscle mass but does not affect satellite cell number or concentration of MLC-1f mRNA. J. Anim. Sci. 76:1371-1379.
  48. Vasconcelos, J. T., R. J. Rathmann, R. R. Reuter, J. Leibovich, J. P. McMeniman, K. E. Hales, T. L. Covey, M. F. Miller, W. T. Nichols, and M. L. Galyean. 2008. Effects of duration of zilpaterol hydrochloride feeding and days on the finishing diet on feedlot cattle performance and carcass traits. J. Anim. Sci. 86:2005-2015. https://doi.org/10.2527/jas.2008-1032
  49. Verhoeckx, K. C. M., R. P. Doornbos, J. van der Greef, R. F. Witkamp, and R. J. T. Rodenberg. 2005. Inhibitory effects of the 2-adrenergic receptor agonist zilpaterol on the LPS-induced production of TNF-$\alpha$ in vitro and in vivo. J. Vet. Pharmacol. Ther. 28:531-537. https://doi.org/10.1111/j.1365-2885.2005.00691.x
  50. Verhoeckx, K. C. M., R. P. Doornbos, R. F. Witkamp, J. van der Greef, and R. J. T. Rodenberg. 2006. Beta-adrenergic receptor agonists induce the release of granulocyte chemotactic protein-2, oncostatin M, and vascular endothelial growth factor from macrophages. Int. Immunopharmacol. 6:1-7. https://doi.org/10.1016/j.intimp.2005.05.013
  51. Walker, D. K., E. C. Titgemeyer, J. S. Drouillard, E. R. Loe, B. E. Depenbusch, and A. S. Webb. 2006. Effects of ractopamine and protein source on growth performance and carcass characteristics of feedlot heifers. J. Anim. Sci. 84:2795-2800. https://doi.org/10.2527/jas.2005-614
  52. Walker, D. K., E. C. Titgemeyer, T. J. Baxa, K. Y. Chung, D. E. Johnson, S. B. Laudert, and B. J. Johnson. 2010. Effects of ractopamine and sex on serum metabolites and skeletal muscle gene expression in finishing steers and heifers. J. Anim. Sci. 88:1349-1357. https://doi.org/10.2527/jas.2009-2409
  53. Wheeler, T. L. and M. Koohmaraie. 1992. Effects of the beta-adrenergic agonist L-644,969 on muscle protein turnover, endogenous proteinase activities and meat tenderness in steers. J. Anim. Sci. 70:3035-3043.

Cited by

  1. Ultrasensitive electrochemiluminescent brombuterol immunoassay by applying a multiple signal amplification strategy based on a PAMAM-gold nanoparticle conjugate as the bioprobe and Ag@Au core shell nanoparticles as a substrate vol.184, pp.9, 2017, https://doi.org/10.1007/s00604-017-2359-0
  2. Development of an immunochromatographic strip for the rapid detection of 10 β-agonists based on an ultrasensitive monoclonal antibody vol.28, pp.4, 2017, https://doi.org/10.1080/09540105.2017.1309358
  3. Ractopamine supplementation improves leanness and carcass yield, minimally affecting pork quality in immunocastrated pigs vol.75, pp.3, 2018, https://doi.org/10.1590/1678-992x-2016-0321
  4. Sensitive Assay of Clenbuterol Residues in Beef by Ultra-High Performance Liquid Chromatography Coupled with Mass Spectrometry (UPLC-MS/MS) and Solid-Phase Extraction vol.11, pp.9, 2018, https://doi.org/10.1007/s12161-018-1222-1
  5. -Agonist Residues in Animal-Derived Food by a Liquid Chromatography-Tandem Mass Spectrometric Method Combined with Molecularly Imprinted Stir Bar Sorptive Extraction vol.2018, pp.2090-8873, 2018, https://doi.org/10.1155/2018/9053561
  6. The beta-adrenergic agonist zilpaterol hydrochloride may predispose feedlot cattle to cardiac remodeling and dysfunction vol.7, pp.2046-1402, 2018, https://doi.org/10.12688/f1000research.14313.1
  7. Comparative evaluation of supplemental zilpaterol hydrochloride sources on growth performance, dietary energetics and carcass characteristics of finishing lambs vol.32, pp.2, 2019, https://doi.org/10.5713/ajas.18.0152
  8. Determination of a Large Set of β-Adrenergic Agonists in Animal Matrices Based on Ion Mobility and Mass Separations vol.87, pp.18, 2014, https://doi.org/10.1021/acs.analchem.5b01831
  9. Detection of β-agonists in pork tissue with novel electrospun nanofibers-based solid-phase extraction followed ultra-high performance liquid chromatography/tandem mass spectrometry vol.227, pp.None, 2014, https://doi.org/10.1016/j.foodchem.2017.01.059
  10. Effects of increasing supplemental dietary Zn concentration on growth performance and carcass characteristics in finishing steers fed ractopamine hydrochloride vol.96, pp.5, 2014, https://doi.org/10.1093/jas/sky094
  11. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the vol.96, pp.7, 2014, https://doi.org/10.1093/jas/sky164
  12. Recent advances to improve nitrogen efficiency of grain-finishing cattle in North American and Australian feedlots vol.59, pp.11, 2014, https://doi.org/10.1071/an19259
  13. Effects of ractopamine hydrochloride supplementation on feeding behavior, growth performance, and carcass characteristics of finishing steers 1,2 vol.3, pp.4, 2014, https://doi.org/10.1093/tas/txz114
  14. Evaluation of R‐ (−) and S‐ (+) Clenbuterol enantiomers during a doping cycle or continuous ingestion of contaminated meat using chiral liquid chromatography by LC‐TQ vol.11, pp.8, 2014, https://doi.org/10.1002/dta.2612
  15. Effect of Zilpaterol Hydrochloride on Performance and Meat Quality in Finishing Lambs vol.10, pp.6, 2020, https://doi.org/10.3390/agriculture10060241
  16. Aqueous ractopamine exposure below 0.22 mg/L has no effect on mortality, malformation, or growth of developing Xenopus laevis tadpoles vol.102, pp.5, 2014, https://doi.org/10.1080/02772248.2020.1778700
  17. Heat stress and β-adrenergic agonists alter the adipose transcriptome and fatty acid mobilization in ruminant livestock 1 vol.4, pp.suppl1, 2014, https://doi.org/10.1093/tas/txaa122
  18. Identification and expression pattern analysis of miRNAs in pectoral muscle during pigeon (Columba livia) development vol.9, pp.None, 2014, https://doi.org/10.7717/peerj.11438
  19. Extracellular and intracellular zilpaterol and clenbuterol quantification in Hep G2 liver cells by UPLC-PDA and UPLC–MS/MS vol.195, pp.None, 2014, https://doi.org/10.1016/j.jpba.2020.113817
  20. Effects of voluntary removal of ractopamine hydrochloride (Optaflexx) on live performance and carcass characteristics of beef steers vol.5, pp.2, 2021, https://doi.org/10.1093/tas/txab047
  21. Beta-agonist drugs modulate the proliferation and differentiation of skeletal muscle cells in vitro vol.26, pp.None, 2014, https://doi.org/10.1016/j.bbrep.2021.101019
  22. Characterization of β-adrenergic receptors in bovine intramuscular and subcutaneous adipose tissue: comparison of lubabegron fumarate with β-adrenergic receptor agonists and antagonists vol.99, pp.8, 2014, https://doi.org/10.1093/jas/skab116
  23. Initial Liver Copper Status in Finishing Beef Steers Fed Three Dietary Concentrations of Copper Affects Beta Agonist Performance, Carcass Characteristics, Lipolysis Response, and Muscle Inflammation M vol.11, pp.9, 2014, https://doi.org/10.3390/ani11092753
  24. Sustained heat stress elevated corneal and body surface temperatures and altered circulating leukocytes and metabolic indicators in wether lambs supplemented with ractopamine or zilpaterol vol.99, pp.9, 2014, https://doi.org/10.1093/jas/skab236
  25. Welfare traits of Bos indicus cattle castrated immunologically and fed beta-adrenergic agonists vol.34, pp.9, 2014, https://doi.org/10.5713/ajas.19.0986
  26. Supplementing zilpaterol hydrochloride to heat-stressed beef cattle for 21 d alters the adipose transcriptome and is predicted to alter stress response pathways vol.5, pp.suppl1, 2014, https://doi.org/10.1093/tas/txab158
  27. Determination of β-Agonists in Urine Samples at Low µg/kg Levels by Means of Pulsed Amperometric Detection at a Glassy Carbon Electrode Coupled with RP-LC vol.11, pp.23, 2014, https://doi.org/10.3390/app112311302
  28. Effect of trenbolone acetate, melengestrol acetate, and ractopamine hydrochloride on the growth performance of beef cattle vol.101, pp.4, 2021, https://doi.org/10.1139/cjas-2020-0159