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Abstract As WSNs(Wireless Sensor Networks) are being deployed widely in diverse
application areas, their management and maintenance become more important. Recent
sensor node software takes modular software architectures in pursuit of flexible
software management and energy efficient reprogramming. To realize an flexible and
efficient modular architecture particularly on resource constrained mote-class sensor
nodes that are implemented with MCUs(Micro-Controller Units) of a single address
space. an appropriate module linking model is essential to resolve and bind the
inter-module global symbols. This paper identifies a design space of module linking
model and respectively their implementation frameworks. We then establish a taxonomy
for module linking models by exploring the design space of module linking models.
Finally, we suggest an implementation framework respectively for each module linking
model in the taxonomy. We expect that this work lays the foundations for systematic
innovation toward more flexible and efficient modular software architectures for WSNs.
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1. Introduction†

WSNs are being used more widely in diverse

areas which include environmental monitoring to

capture periodically the physical or chemical volume

of interest, military operations to make unmanned

surveillance, and disaster prognosis to observe the

critical activity of disaster sources such as volcanic

activity[1,2]. The widespread of WSNs raises the

management and maintenance of sensor node soft-
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ware as one of critical issues. As application logic

becomes more complex, we need some modularity

to decouple software elements according to their

functionality. As in other computing areas, needs for

maintenance would occur throughout the life of a

deployed WAN. Software update may have to de-

pend on OTA(Over-The-Air) code dissemination as

WSNs are often deployed in an unreachable area.

This requires energy-efficient software update espe-

cially on resource-constrained sensor nodes[5].

A modular software architecture provides a prom-

ising solution to efficient software management and

maintenance[3,4,5,6,7]. A modular architecture dis-

integrates the node software suite into a set of in-

dependent module; A module encapsulates individual

software element such as the OS kernel, the net-

work stack, and an application, and is coupled with
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other modules via inter-module function calls.

Modular software architectures facilitate efficient

software management by organizing complex soft-

ware into a collection of discrete modules.

Furthermore, modular software architectures may

enhance energy-efficiency in software update by

enabling to replace just the intended module rather

than the entire code image.

Over the years, a number of sensor OSes adopt

modular approaches to their software architectures

[8,9,10,11,12]. These approaches respectively contrib-

utes to addressing a wide spectrum of challenging

issues stemming from stringent resource constraint,

the limited memory model of a single-address

space, and hardware restriction of MMU-less

MCUs. However, a substantial body of the works

do not fully address both flexibility and efficiency

issues altogether, failing to delivering the architec-

tural potential of modular software architectures

fully into the context of WSNs.

For flexible an efficient modular software archi-

tectures for mote-class sensor nodes, a robust mod-

ule linking model is essential. The module linking in

our terminology means to link symbols between

modules, and the way for module linking, which we

call the module linking model, should always be

employed in the design of a modular software

architecture. Of important design principles, the un-

derlying module linking model has a dominant effect

on the degree of the flexibility and the efficiency of

the modular sensor software architecture. Firstly,

the underlying module linking model shapes the

way to implement bindings for external symbol ref-

erences which, in turn, determines the tightness

of module linkage. As a consequence, the module

linking model determines whether a module can be

independently built or not, and whether the system

allows for dynamic modular update. Secondly, the

memory model for inter-module linkage enforced by

the module linking model determines both symbol

access latency for inter-module symbol references

and the amount of memory required for its

implementation.

This paper presents a taxonomy of module link-

ing model and respectively their implementation

frameworks. We establish a taxonomy for module

linking models by exploring the design space of

module linking models. We then suggest a im-

plementation framework respectively for each mod-

ule linking model in the taxonomy.

The remainder of the paper is organized as

follows. Section 2 presents the proposed taxonomy

of module linking models. Section 3 explains im-

plementation frameworks respectively for module

linking models exposed by the taxonomy. Finally,

section 4 provides the concluding remark and future

search issues.

2. Taxonomy of Module linking models

Module linking models can be crudely charac-

terized by two attributes associated with their

organizations. One attribute is where the linking

operation is performed; linking can be performed ei-

ther on the computer with the cross-development

environment or th target sensor node. The other at-

tribute is how a binding is implemented in memory;

References to external symbols, i.e., external varia-

bles or functions, are made either directly to their

physical addresses or indirectly to some pointers

from which the external symbols can be

dereferenced. These two attributes are orthogonal

each other; we thus can obtain a two-dimensional

classification framework for module linking models.

Offline versus online linking : The offline link-

ing refers to the module linking performed on off-

line computers as in conventional cross-compilation

environments. Under this module linking, given a

module to update, the code to be disseminated to

target sensor nodes from the offline computer is the

fully linked excutable code generated on the offline

computers. The online linking refers to the module

linking performed on target sensor nodes. In this
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case, given a module to update, the code dis-

seminated to the target sensor node from the offline

computers remains unlinked; The linking process is

performed on the target sensor node.

Direct versus indirect binding : In the directly

bound code, the physical address of the external

symbol is placed in the code image for each ex-

ternal symbol reference. The indirectly bound code,

the physical address of a pointer is placed in the

code image for each external symbol reference. The

pointer is used at runtime for dereferencing its tar-

get symbol. Ordinary public or commercial

tool-chains of state-of-the-art 8-Bit MCUs, support

only a single monolithic code image generated only

for a single program that does not allows in-

cremental compilation for late binding. The indirect

binding is not feasible without some non-trivial ef-

fort to code instrumentation. Therefore, to support

indirect binding, an appropriate binding environment

is to be designed. The binding environment means

the memory organization for symbol pointers to

support external symbol references.

Above two attributes provide a simple, but com-

prehensive framework for classifying linking models

because they encompass the effective design space.

According to this framework, we can identify four

linking models.

3. Implementation frameworks

This section presents the implementation frame-

work for each module linking model exposed by our

taxonomy, detailing the development method and

memory model for binding environments as well as

relative advantages and disadvantages.

3.1 Offline direct module linking(OFD)

This is the module linking model in which linking

operations are carried out on offline computers and

the external symbol references are implemented by

the direct binding. As linking operation is carried

out on offline computers, given a module to update,

the code to be disseminated to the target sensor

node is in the form of a fully linked executable im-

age generated from the linking. Due to direct bind-

ing, the module's executable image keeps each ex-

ternal reference bound with the absolute address of

the symbol. This form of binding is, in fact, the

same with the one resulting from the conventional

monolithic development. This is why some projects

adopting this model discard it in their future proj-

ects[8]

Given a module of interest to update, the binary

image for the module cannot be handled in-

dependently, but the whole system modules should

be rebuilt into a new executable image; the mod-

ule's fully linked executable image is included in

the executable image for the entire modules. This is

because both the module of interest and the other

modules may require rebuilding as explained below:

In general, a module of interest to update may

have both public symbols provided for other mod-

ules and external symbol references. Hence, the

consumer modules which refers to public symbols

in the module of interest should also be rebuilt with

the module of interest to renew the absolute ad-

dresses of the public symbols belonging to the

module of interest. Otherwise, the referential incon-

sistency occurs in consumer modules against all the

public symbols owned by the module of interest.

The OFD model provides a simple and efficient

way to implement modular software architecture,

enabling to benefit from modular approach itself.

However, it does not have any substantial architec-

tural merit over the monolithic architecture except

the modularity in programming. The practical use of

modular dissemination and update is not feasible

with this model.

3.2 Online direct module linking(OND)

This is the module linking model in which linking
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operations are carried out on the target sensor node,

and the external symbol references are implemented

by direct binding. Due to direct binding, the mod-

ule's executable image keeps each external reference

bound with the absolute address of the symbol. As

noted earlier, this form of binding is also the same

with the one resulting from the conventional mono-

lithic development.

The OND model has specific requirements re-

spectively for code building and for development

tools. Firstly, the code building is separated into

two distinct steps. The compilation is made offline

under the cross-compiler and the linking is per-

formed on the target sensor node. The main reason

for offline compilation is that online compilers on

resource constraint of sensor nodes are not available

and it is not reasonable to newly implement them.

On the other hand, the module linking is made on-

line in accordance with the nature of the OND

model. Secondly, in terms of development tools, the

OND model demands an online linker that generates

the executable code through ordinary linking

operations. For the OND model, an online linker

must be implemented because off-the-shelf online

linkers are not readily available. Some projects

show that it is practically possible to implement

online linkers even under resource-constrained sen-

sor node[9].

When online linkers are available, the scenario for

updating a module is as follows. Given a module to

be updated, the intermediate object file is produced

through the offline compilation and then is trans-

ferred over-the-air to the target sensor node.

Taking the intermediate object file, the online linker

performs the module linking with the intermediate

object files for the remaining modules stored in

flash memory, producing a fully linked binary image

for the entire node software. Loaded in the system

flash, the executable image will be executed, re-

starting the system.

This module linking model allows energy-efficient

reprogramming as it supports modular

dissemination. The energy efficiency of this model

would be quite higher than the OFD model which

do not support the modular dissemination. However,

it is to some degree lower than other better models

such as the OFI and ONI model because the sym-

bol information included in the intermediate object

file causes additional cost in transmission energy.

Next, as module linking is handled by online linker,

developers are not burdened with any supplemental

code instrumentation to support module linking.

This module linking model has also some dis-

advantages and limitations. Firstly, an online linker

must be developed. It should be challenging to de-

velop a linker on the small memory capacity of

sensor nodes. The online linker should be maximally

interoperable enough to support conventional object

file formats such as the ELF file format. Another

disadvantage is severe memory overhead. This

model retains several sources of the memory

overhead. The intermediate object files for the rest

of modules are to be maintained in the flash memo-

ry of the sensor node; The online linker uses them

to produce a new executable image for the entire

node software when a new module is to be

updated. Moreover, it is required that the online

linker itself be kept in the flash memory of the

sensor nodes.

3.3 Offline indirect module linking(OFI)

This is an OFI model in which linking operations

are carried out on offline computers and the ex-

ternal symbol references are implemented by in-

direct binding. Independent of the other modules, a

module is built into a fully linked executable image

on an offline computer. In the module's executable

image, each external reference in the executable im-

age is encoded with the absolute address of the

symbol pointer rather than directly with the symbol

address. The symbol pointer keeps the memory ad-

dress of its symbol.

For this model, the binding environment must
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<Fig. 1> Example view of modules in the OFI model

satisfy the following two requirements. The first

one is associated with symbol references in the

code. All the external symbol references in a mod-

ule should be able to be set to the addresses of

their symbol pointers at compile-time. This implies

that the addresses of all the symbol pointers for its

external symbol references are explicitly known at

module compile-time. The second requirement is

associated with symbol pointers in the binding

environment. Each symbol pointer should be able to

be set statically at build time to the memory ad-

dress of its symbol.

Our proposal to implementing the OFI model is

based on a binding environment in which each

module maintains a symbol pointer for each public

symbol within the module. These pointers will be

called collectively the per-module public symbol ta-

ble in our terminology. The table provides, as a ta-

ble entry, a symbol pointer for each of public sym-

bols within the module. Each pointer in the table

keeps the address of its public symbol. External

references from other modules to the public symbols

are made via these table entries. This design sat-

isfies the two requirements for the binding environ-

ment as follows. First, addresses of symbol pointers

can be explicitly exposed to other modules by just

statically allocating the table in a predetermined lo-

cation memory. Second, as both the table and public

symbols belong to the same module source code,

setting each table entry to its symbol address can

be made without any difficulty.

When employing the proposed binding environ-

ment, a module consists of three parts. The first

one is the code that implements the module's own

logic. The second one consists of public functions

that the module provides externally for other

modules. The third part is the per-module symbol

table where each table entry serve as a function

pointer respectively to a public function in the

module. <Fig. 1> shows the logical view of the

module organization. For brevity, it is assumed that

only functions are allowed for external accesses by

other modules. In module X, the per-module symbol

table contains the addresses of public functions de-

fined in module X. In module Y, an external refer-

ence to module X is bound to the address of a

per-module symbol table entry in module X.

The OFI model can be viewed as an approach to

enhance the architectural flexibility by breaking the

tight coupling through the indirection. As the ex-

ternal references are not directly coupled with the

physical address of the external symbols, a new

version of a module can be seamlessly updated, en-

abling energy efficient modular dissemination and

dynamic modular update. But, the developer has

some burden to determine the memory space for the

per-module public table.
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3.4 Online indirect module linking(ONI)

This is the module linking model in which linking

operations are carried out on offline computers and

the external symbol references are implemented by

indirect binding. In the module's executable image,

each external reference is encoded with the absolute

address of the symbol pointer. The code from the

offline computer remains unlinked; Each symbol

pointer in the executable image remains empty

without being set to the memory address of its

symbol. These pointers are filled later through the

module linking model on the target node.

As discussed for the OFI model, the binding en-

vironment, i.e., organization of symbol pointers,

needs to be addressed because the ONI model also

adopts the indirect binding. To support the ONI

model, the organization must satisfy the following

two requirements. Firstly, as for the bindings for

symbol references, it must be possible to set all the

external symbol references in the module to the ad-

dresses of their symbol pointers at module load

time. Secondly, as for the binding for symbol point-

ers, each symbol pointer should be able to be set at

the load time such that it can be dereferenced to

the memory address of its symbol. Note that these

two conditions is to address respectively the in-

direct binding and the online linking.

Our proposal to implementing the ONI model is

based on a binding environment in which each

module maintains a symbol pointer respectively for

each external symbol referenced by the module.

These pointers will be collectively called the

per-module external symbol table. The table pro-

vides, as a table entry, a symbol pointer for each

of external symbols referenced in the module. Each

pointer in the table keeps the address of its ex-

ternal symbol. External references within the mod-

ule are made via these table entries. The per-mod-

ule external symbol table satisfies both requirements

mentioned earlier. Firstly, symbol pointers for ex-

ternal symbol references are naturally exposed at

module build time because the table belongs to the

module. The external symbol references can thus be

statically bound to addresses of their symbol

pointers. Secondly, the problem of binding for sym-

bol pointers can be solved by using some dynamic

mechanisms. These will be illustrated shortly.

<Fig. 2> shows the organization of modules

based on per-module external symbol tables. Each

module consists of the module logic, public func-

tions, and a per-module external symbol table. In

module X, an external symbol reference to a symbol

in module Z is bound to the address of its

per-module external table entry.

The main issue for implementing the per-module

external symbol table for the ONI model is how to

bind symbol pointers. It can be achieved by regis-

tration and subscription concepts as suggested in

[10]. Registration refers to the operation that a

module notifies the system of the information on its

public symbols, and subscription refers to the oper-

ation that a module obtains information about their

external symbols. The system keeps the information

registered by each module and supply the in-

formation upon requests.

Given a module, bindings for symbol pointers are

made though registration and subscription at module

load time. The module registers addresses of its

global symbols to the system symbol table at the

module load time. A module with any references to

external symbols subscribes to the symbols.

Through the subscription, the module can obtain

absolute addresses of the external symbols and pla-

ces them to its own per-module external symbol

table. Once the module finishes the registration and

the subscription, it becomes fully linked with other

modules.

When implementing this model based on the

per-module external symbol table, we can benefit

from two important features. Firstly, each module

source code is self-contained without any

source-level dependence on other modules. Bindings

for symbol pointers are the only information de-
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<Fig. 2> Example logical view of modules in the ONI model

pendent on other modules, but they are obtained

dynamically. This independency introduces simplicity

in module programming and building over th OFI

model. The developers are not burdened with static

memory space allocation for per-module tables

across all the modules. Next, the per-module ex-

ternal symbol table and its associated instrumental

code can be programed in conventional high level

language such as C language, as does for the OFI

model. This allows that ordinary off-the-self com-

pilers and linkers are sufficient in generating the

executable image for a module.

This model prioritizes complexity of code in-

strumentation over the burden of the online linker;

The linking process in this model is very

light-weight, whereas application developers are

burdened with some code instrumentation. In spite

of the burden of the instrumentation code, this

model supports both modular dissemination and dy-

namic modular update.

4. Conclusions

The paper provides the first comprehensive ex-

ploration on the module linking issue in building the

modular software architecture especially within the

context of WSNs. We identify two core attributes,

the place where module linking is conducted and

the memory structure that implements the external

symbol binding, as the essential factors that shapes

the operation and performance of module linking

models. The taxonomy based on those attributes is

very simple, but comprehensive for exposing the

design space of module linking models. The module

linking models exposed by the taxonomy and their

implementation framework suggested in this paper

would serve as a foundation for designing more

flexible and efficient modular software architectures.

As a future research, we will investigate the exist-

ing systems and their implementation from the per-

spective of the proposed taxonomy to suggest any

enhancement of the implementations of future mod-

ular architectures.
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