DOI QR코드

DOI QR Code

Current trends in dental implants

  • Gaviria, Laura (Department of Biomedical Engineering, The University of Texas at San Antonio) ;
  • Salcido, John Paul (Department of Biomedical Engineering, The University of Texas at San Antonio) ;
  • Guda, Teja (Department of Biomedical Engineering, The University of Texas at San Antonio) ;
  • Ong, Joo L. (Department of Biomedical Engineering, The University of Texas at San Antonio)
  • 투고 : 2014.03.20
  • 심사 : 2014.04.02
  • 발행 : 2014.04.30

초록

Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evolution of dental implants. It also describes the types of implants that have been developed, and the parameters that are presently used in the design of dental implants. Finally, it describes the trends that are employed to improve dental implant surfaces, and current technologies used for the analysis and design of the implants.

키워드

참고문헌

  1. Elias CN. Factors affecting the success of dental implants [Internet]. Rijeka: InTech [cited 2014 Apr 22]. Available from: http://www.intechopen.com/books/implant-dentistry-a-rapidly-evolving-practice/factors-affecting-the-success-of-dental-implants.
  2. Searson LJ. History and development of dental implants. In: Narim L, Wilson HF, eds. Implantology in general dental practice. London, Chicago: Quintessence Publishing Co; 2005:19-41.
  3. DiGiallorenzo D. History of dental implants [Internet]. Collegeville (PA): Lanap & Implant Center of Pennsylvania [cited 2014 Apr 21]. Available from: http://www.perioimplants.us/history-of-dental-implants.html.
  4. Sullivan RM. Implant dentistry and the concept of osseointegration: a historical perspective. J Calif Dent Assoc 2001;29:737-45.
  5. Mijiritsky E, Mazor Z, Lorean A, Levin L. Implant diameter and length influence on survival: interim results during the first 2 years of function of implants by a single manufacturer. Implant Dent 2013;22:394-8. https://doi.org/10.1097/ID.0b013e31829afac0
  6. Oral and maxillofacial surgeons: the experts in face, mouth and jaw surgery [Internet]. Rosemont (IL): American Association of Oral and Maxillofacial Surgeons [cited 2014 Apr 21]. Available from: http://www.aaoms.org/conditions-and-treatments/dental-implants.
  7. Gupta A, Dhanraj M, Sivagami G. Status of surface treatment in endosseous implant: a literary overview. Indian J Dent Res 2010;21:433-8. https://doi.org/10.4103/0970-9290.70805
  8. Seth S, Kalra P. Effect of dental implant parameters on stress distribution at bone-implant interface. Inter J Sci Res 2013;2:121-4.
  9. Lee JH, Frias V, Lee KW, Wright RF. Effect of implant size and shape on implant success rates: a literature review. J Prosthet Dent 2005;94:377-81. https://doi.org/10.1016/j.prosdent.2005.04.018
  10. Dental implants: histroy of dental implants [Internet]. [place unknown]: Manoimplantai [cited 2014 Apr 22]. Available from: http://www.manoimplantai.lt/dantu-implantai/dantu-implantu-istorija/?lang=en.
  11. Dental implant history [Internet]. Albufeira: Cris Piessens Clinic [cited 2014 Apr 22]. Available from: http://www.crispiessensclinic.com/implant_history.html.
  12. History [Internet]. Chicago (IL): American Academy of Implant Dentistry [cited 2014 Apr 22]. Available from: http://www.aaid.com/about/History.html.
  13. Find out who was responsible for starting dental implant history [Internet]. [place unknown]: Dental-Health-Advice [cited 2014 Apr 22]. Available from: http://www.dental-health-advice.com/dental-implant-history.html.
  14. Kawahara H, Kawahara D. The history and concept of implant [Internet]. Tokyo: AQB Implant System [cited 2014 Apr 22]. Available from: http://www.aqb.jp/english/file/TheBasicsPart1.pdf.
  15. Nobel Biocare has a 40-year heritage of scientific research and innovation [Internet]. Zurich-Flughafen: Nobel Biocare [cited 2014 Apr 22]. Available from: http://corporate.nobelbiocare.com/en/our-company/history-and-innovations/.
  16. Rethman MP. Introduction & historical perspectives on dental implants. Chicago: Hu-Friedy; 2010:1-4.
  17. Han HS. Design of new root-form endosseous dental implant and evaluation of fatigue strength using finite element analysis [master's thesis]. Iowa: The University of Iowa; 2009.
  18. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54. https://doi.org/10.1016/j.dental.2006.06.025
  19. Javed F, Ahmed HB, Crespi R, Romanos GE. Role of primary stability for successful osseointegration of dental implants: factors of influence and evaluation. Interv Med Appl Sci 2013;5:162-7. https://doi.org/10.1556/IMAS.5.2013.4.3
  20. Meltzer AM. Primary stability and initial bone-to-implant contact: the effects on immediate placement and restoration of dental implants. J Implant Reconstruct Dent 2009;1:35-41.
  21. Stanford CM. Surface modifications of dental implants. Aust Dent J 2008;53(Suppl 1):S26-33. https://doi.org/10.1111/j.1834-7819.2008.00038.x
  22. Steigenga JT, al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent 2003;12:306-17. https://doi.org/10.1097/01.ID.0000091140.76130.A1
  23. Chamay A, Tschantz P. Mechanical influences in bone remodeling. Experimental research on Wolff's law. J Biomech 1972;5:173-80. https://doi.org/10.1016/0021-9290(72)90053-X
  24. Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 1987;20:1135-50. https://doi.org/10.1016/0021-9290(87)90030-3
  25. Kan JY, Rungcharassaeng K, Kim J, Lozada JL, Goodacre CJ. Factors affecting the survival of implants placed in grafted maxillary sinuses: a clinical report. J Prosthet Dent 2002;87:485-9. https://doi.org/10.1067/mpr.2002.124202
  26. Geng JP, Xu DW, Tan KB, Liu GR. Finite element analysis of an osseointegrated stepped screw dental implant. J Oral Implantol 2004;30:223-33. https://doi.org/10.1563/0654.1
  27. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, et al. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74. https://doi.org/10.1046/j.1365-2842.2002.00891.x
  28. Motoyoshi M, Yano S, Tsuruoka T, Shimizu N. Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis. Clin Oral Implants Res 2005;16:480-5. https://doi.org/10.1111/j.1600-0501.2005.01130.x
  29. Geng JP, Ma QS, Xu W, Tan KB, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil 2004;31:233-9. https://doi.org/10.1046/j.0305-182X.2003.01213.x
  30. Eraslan O, Inan O. The effect of thread design on stress distribution in a solid screw implant: a 3D finite element analysis. Clin Oral Investig 2010;14:411-6. https://doi.org/10.1007/s00784-009-0305-1
  31. Steigenga J, Al-Shammari K, Misch C, Nociti FH Jr, Wang HL. Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. J Periodontol 2004;75:1233-41. https://doi.org/10.1902/jop.2004.75.9.1233
  32. Chong L, Khocht A, Suzuki JB, Gaughan J. Effect of implant design on initial stability of tapered implants. J Oral Implantol 2009;35:130-5. https://doi.org/10.1563/1548-1336-35.3.130
  33. Kim JW, Baek SH, Kim TW, Chang YI. Comparison of stability between cylindrical and conical type mini-implants. Mechanical and histological properties. Angle Orthod 2008;78:692-8. https://doi.org/10.2319/0003-3219(2008)078[0692:COSBCA]2.0.CO;2
  34. Binon PP. Implants and components: entering the new millennium. Int J Oral Maxillofac Implants 2000;15:76-94.
  35. Finger IM, Castellon P, Block M, Elian N. The evolution of external and internal implant/abutment connections. Pract Proced Aesthet Dent 2003;15:625-32, quiz 634.
  36. Vidyasagar L, Apse P. Dental implant design and biological effects on bone-implant interface. Stomatologija 2004;6:51-4.
  37. Triplett RG, Frohberg U, Sykaras N, Woody RD. Implant materials, design, and surface topographies: their influence on osseointegration of dental implants. J Long Term Eff Med Implants 2003;13:485-501.
  38. Guan H, van Staden R, Loo YC, Johnson N, Ivanovski S, Meredith N. Influence of bone and dental implant parameters on stress distribution in the mandible: a finite element study. Int J Oral Maxillofac Implants 2009;24:866-76.
  39. Mandhane SS, More AP. A review: evaluation of design parameters of dental implant abutment. Inter J Emerging Sci Eng 2014;2:64-7.
  40. Ivanoff CJ, Sennerby L, Johansson C, Rangert B, Lekholm U. Influence of implant diameters on the integration of screw implants. An experimental study in rabbits. Int J Oral Maxillofac Surg 1997;26:141-8.
  41. Shemtov-Yona K, Rittel D, Levin L, Machtei EE. Effect of dental implant diameter on fatigue performance. Part I: mechanical behavior. Clin Implant Dent Relat Res 2012. doi: 10.1111/j.1708-8208.2012.00477.x. [Epub ahead of print]
  42. Himmlova L, Dostalova T, Kacovsky A, Konvickova S. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent 2004;91:20-5. https://doi.org/10.1016/j.prosdent.2003.08.008
  43. Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent 2008;100:422-31. https://doi.org/10.1016/S0022-3913(08)60259-0
  44. Lan TH, Du JK, Pan CY, Lee HE, Chung WH. Biomechanical analysis of alveolar bone stress around implants with different thread designs and pitches in the mandibular molar area. Clin Oral Investig 2012;16:363-9. https://doi.org/10.1007/s00784-011-0517-z
  45. Kumar K, Ramesh Bhat TR, Harish PV, Sameer VK, Gangaiah M. Nanobiotechnology approaches to design better dental implant materials. Trends Biomater Artif Organs 2011;25:30-3.
  46. Palmquist A, Omar OM, Esposito M, Lausmaa J, Thomsen P. Titanium oral implants: surface characteristics, interface biology and clinical outcome. J R Soc Interface 2010;7(Suppl 5):S515-27. https://doi.org/10.1098/rsif.2010.0118.focus
  47. Bonfante EA, Marin C, Granato R, Suzuki M, Hjerppe J, Witek L, et al. Histologic and biomechanical evaluation of alumina-blasted/acid-etched and resorbable blasting media surfaces. J Oral Implantol 2012;38:549-57. https://doi.org/10.1563/AAID-JOI-D-10-00105
  48. Dohan Ehrenfest DM, Coelho PG, Kang BS, Sul YT, Albrektsson T. Classification of osseointegrated implant surfaces: materials,chemistry and topography. Trends Biotechnol 2010;28:198-206. https://doi.org/10.1016/j.tibtech.2009.12.003
  49. Yuan H, Yang Z, Li Y, Zhang X, De Bruijn JD, De Groot K. Osteoinduction by calcium phosphate biomaterials. J Mater Sci Mater Med 1998;9:723-6. https://doi.org/10.1023/A:1008950902047
  50. Søballe K. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand Suppl 1993;255:1-58.
  51. Barrère F, van der Valk CM, Meijer G, Dalmeijer RA, de Groot K, Layrolle P. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res B Appl Biomater 2003;67:655-65.
  52. Ota-Tsuzuki C, Datte CE, Nomura KA, Gouvea Cardoso LA, Shibli JA. Influence of titanium surface treatments on formation of the blood clot extension. J Oral Implantol 2011;37:641-7. https://doi.org/10.1563/AAID-JOI-D-09-00125.1
  53. Ahn SJ, Leesungbok R, Lee SW. Histomorphometric analysis and removal torque of small diameter implants with alternative surface treatments and different designs. J Oral Implantol 2010;36:263-72. https://doi.org/10.1563/AAID-JOI-D-09-00052
  54. Gil FJ, Manzanares N, Badet A, Aparicio C, Ginebra MP. Biomimetic treatment on dental implants for short-term bone regeneration. Clin Oral Investig 2014;18:59-66. https://doi.org/10.1007/s00784-013-0953-z
  55. de Jonge LT, Leeuwenburgh SC, Wolke JG, Jansen JA. Organic-inorganic surface modifications for titanium implant surfaces. Pharm Res 2008;25:2357-69. https://doi.org/10.1007/s11095-008-9617-0
  56. Coelho PG, Granjeiro JM, Romanos GE, Suzuki M, Silva NR, Cardaropoli G, et al. Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater 2009;88:579-96.
  57. Daugaard H, Elmengaard B, Bechtold JE, Jensen T, Soballe K. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J Biomed Mater Res A 2010;92:913-21.
  58. Ong JL, Carnes DL, Bessho K. Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Biomaterials 2004;25:4601-6. https://doi.org/10.1016/j.biomaterials.2003.11.053
  59. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 2009;20(Suppl 4):172-84. https://doi.org/10.1111/j.1600-0501.2009.01775.x
  60. Dos Santos MV, Elias CN, Cavalcanti Lima JH. The effects of superficial roughness and design on the primary stability of dental implants. Clin Implant Dent Relat Res 2011;13:215-23. https://doi.org/10.1111/j.1708-8208.2009.00202.x
  61. Romanos G, Ko HH, Froum S, Tarnow D. The use of CO(2) laser in the treatment of peri-implantitis. Photomed Laser Surg 2009;27:381-6. https://doi.org/10.1089/pho.2008.2280
  62. Park CY, Kim SG, Kim MD, Eom TG, Yoon JH, Ahn SG. Surface properties of endosseous dental implants after NdYAG andCO2 laser treatment at various energies. J Oral Maxillofac Surg 2005;63:1522-7. https://doi.org/10.1016/j.joms.2005.06.015
  63. Romanos GE, Gutknecht N, Dieter S, Schwarz F, Crespi R, Sculean A. Laser wavelengths and oral implantology. Lasers Med Sci 2009;24:961-70. https://doi.org/10.1007/s10103-009-0676-1
  64. Parekh RB, Shetty O, Tabassum R. Surface modifications of endosseous dental implants. Int J Oral Implantol Clin Res 2012;3:116-21. https://doi.org/10.5005/JP-Journals-10012-1078
  65. Diz P, Scully C, Sanz M. Dental implants in the medically compromised patient. J Dent 2013;41:195-206. https://doi.org/10.1016/j.jdent.2012.12.008
  66. Paquette DW, Brodala N, Williams RC. Risk factors for endosseous dental implant failure. Dent Clin North Am 2006;50:361-74. https://doi.org/10.1016/j.cden.2006.05.002
  67. Scully C, Hobkirk J, Dios PD. Dental endosseous implants in the medically compromised patient. J Oral Rehabil 2007;34:590-9. https://doi.org/10.1111/j.1365-2842.2007.01755.x
  68. Gulsahi A. Bone quality assessment for dental implants. Rijeka: InTech; 2011:437-52.
  69. McNutt MD, Chou CH. Current trends in immediate osseous dental implant case selection criteria. J Dent Educ 2003;67:850-9.
  70. Marquezan M, Osório A, Sant'Anna E, Souza MM, Maia L. Does bone mineral density influence the primary stability of dental implants? A systematic review. Clin Oral Implants Res 2012;23:767-74. https://doi.org/10.1111/j.1600-0501.2011.02228.x
  71. Ogden A, British Society for the Study of Prosthetic Dentistry. Guidelines in prosthetic and implant dentistry. London: Quintessence Publishing; 1996.
  72. Anson D, Johnson B, Korb P, Leopardi A, Lytle L, Malmquist J, et al. Recommended training guidelines for basic implant placement. Santa Monica (CA): Institute for Dental Implant Awareness; 2009.
  73. Sonick M. Implant dentistry: evolution and current trends--the times they are A-Changin. Inside Dent 2006;2:86-90.
  74. Mendonça G, Mendonça DB, Aragão FJ, Cooper LF. Advancing dental implant surface technology--from micron- to nanotopography. Biomaterials 2008;29:3822-35. https://doi.org/10.1016/j.biomaterials.2008.05.012
  75. Özkurt Z, Kazazoğlu E. Zirconia dental implants: a literature review. J Oral Implantol 2011;37:367-76. https://doi.org/10.1563/AAID-JOI-D-09-00079
  76. Tomsia AP, Launey ME, Lee JS, Mankani MH, Wegst UGK, Saiz E. Nanotechnology approaches for better dental implants. Int J Oral Maxillofac Implants 2011;26:25-49.
  77. Schliephake H, Aref A, Scharnweber D, Bierbaum S, Roessler S, Sewing A. Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. Clin Oral Implants Res 2005;16:563-9. https://doi.org/10.1111/j.1600-0501.2005.01143.x
  78. Mehrali M, Shirazi FS, Mehrali M, Metselaar HS, Kadri NA, Osman NA. Dental implants from functionally graded materials. J Biomed Mater Res A 2013;101:3046-57. https://doi.org/10.1002/jbm.a.34588

피인용 문헌

  1. 마이크로그루브 및 열산화 복합 티타늄 표면의 골아세포분화 증진효과 vol.53, pp.3, 2014, https://doi.org/10.4047/jkap.2015.53.3.198
  2. Porous Titanium for Dental Implant Applications vol.5, pp.4, 2014, https://doi.org/10.3390/met5041902
  3. Intramembranous bone regeneration and implant placement using mechanical femoral marrow ablation: rodent models vol.5, pp.None, 2014, https://doi.org/10.1038/bonekey.2016.61
  4. Histomorphological and Histomorphometric Analyses of Grade IV Commercially Pure Titanium and Grade V Ti-6Al-4V Titanium Alloy Implant Substrates : An In Vivo Study in Dogs vol.25, pp.5, 2014, https://doi.org/10.1097/id.0000000000000448
  5. FEA model analysis of the effects of the stress distribution of saddle-type implants on the alveolar bone and the structural/physical stability of implants vol.38, pp.None, 2016, https://doi.org/10.1186/s40902-016-0054-4
  6. 골드링을 이용한 완전 밀폐형 어버트먼트 개발 및 성능평가 vol.15, pp.2, 2014, https://doi.org/10.14775/ksmpe.2016.15.2.097
  7. Biosilver nanoparticle interface offers improved cell viability vol.4, pp.3, 2014, https://doi.org/10.1680/jsuin.16.00010
  8. 임플란트용 실링 어버트먼트의 개발 및 구조해석을 통한 성능분석 vol.33, pp.9, 2014, https://doi.org/10.7736/kspe.2016.33.9.769
  9. Propranolol enhances bone healing and implant osseointegration in rats tibiae vol.43, pp.12, 2014, https://doi.org/10.1111/jcpe.12632
  10. Non-Destructive Analysis of Basic Surface Characteristics of Titanium Dental Implants Made by Miniature Machining vol.13, pp.2, 2014, https://doi.org/10.2478/teen-2016-0018
  11. Identification of Surface Characteristics Created by Miniature Machining of Dental Implants Made of Titanium Based Materials vol.192, pp.None, 2014, https://doi.org/10.1016/j.proeng.2017.06.175
  12. Is the shortened dental arch still a satisfactory option? vol.223, pp.2, 2014, https://doi.org/10.1038/sj.bdj.2017.625
  13. Enhanced growth and osteogenic differentiation of MC3T3-E1 cells on Ti6Al4V alloys modified with reduced graphene oxide vol.7, pp.24, 2017, https://doi.org/10.1039/c6ra25832h
  14. Photoacoustic imaging of dental implants in a porcine jawbone ex vivo vol.42, pp.9, 2014, https://doi.org/10.1364/ol.42.001760
  15. Fifteen-year Clinical Follow-up of Restoration of Extensive Cervical Resorption in a Maxillary Central Incisor vol.42, pp.2, 2014, https://doi.org/10.2341/15-131-s
  16. A peptide-based biological coating for enhanced corrosion resistance of titanium alloy biomaterials in chloride-containing fluids vol.31, pp.8, 2014, https://doi.org/10.1177/0885328217692949
  17. Ultrananocrystalline diamond coatings for the dental implant: electrochemical nature vol.5, pp.2, 2017, https://doi.org/10.1680/jsuin.16.00023
  18. A 5-year prospective clinical study of Neobiotech implants for partially edentulous patients vol.55, pp.3, 2014, https://doi.org/10.4047/jkap.2017.55.3.272
  19. Dicationic Imidazolium-Based Ionic Liquid Coatings on Zirconia Surfaces: Physico-Chemical and Biological Characterization vol.8, pp.4, 2017, https://doi.org/10.3390/jfb8040050
  20. Comprehensive Treatment of Severe Periodontal and Periimplant Bone Destruction Caused by Iatrogenic Factors vol.2018, pp.None, 2014, https://doi.org/10.1155/2018/7174608
  21. Endodontic retreatment v/s implant vol.9, pp.3, 2018, https://doi.org/10.15406/jdhodt.2018.09.00385
  22. Evaluation of Fatigue Behavior in Dental Implants from In Vitro Clinical Tests: A Systematic Review vol.8, pp.5, 2014, https://doi.org/10.3390/met8050313
  23. Does Fluoride Cause Corrosion of Titanium Dental Implants? vol.9, pp.1, 2014, https://doi.org/10.5005/jp-journals-10012-1179
  24. An in vitro Study to Evaluate the Bioactivity of Osteoblast Cells on the Titanium Disk Coated with the Hydro Gel formulated from Acemannan and Curcuminoids vol.8, pp.1, 2014, https://doi.org/10.5005/jp-journals-10019-1197
  25. The Influence of the Crown-Implant Ratio on the Crestal Bone Level and Implant Secondary Stability: 36-Month Clinical Study vol.2018, pp.None, 2014, https://doi.org/10.1155/2018/4246874
  26. Enhancing of Osseointegration with Propolis-Loaded TiO 2 Nanotubes in Rat Mandible for Dental Implants vol.11, pp.1, 2014, https://doi.org/10.3390/ma11010061
  27. Functionally Graded Materials: An Overview of Dental Applications vol.9, pp.2, 2014, https://doi.org/10.5005/jp-journals-10015-1523
  28. New collagen-coated calcium phosphate synthetic bone filler (Synergoss®): A comparative surface analysis vol.15, pp.4, 2018, https://doi.org/10.1111/ijac.12854
  29. The effectiveness of different Er,Cr:YSGG laser settings in smear layer on osteotomy sites for dental implants vol.2, pp.3, 2018, https://doi.org/10.1007/s41547-018-0034-3
  30. Selective serotonin re-uptake inhibitor sertraline inhibits bone healing in a calvarial defect model vol.10, pp.3, 2014, https://doi.org/10.1038/s41368-018-0026-x
  31. Side Effects of Dental Metal Implants: Impact on Human Health (Metal as a Risk Factor of Implantologic Treatment) vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/2519205
  32. Photochemical Surface Modification of Titanium Dioxide Nanotube-Coated Surfaces by Ag-Hydroxyapatite Compositions vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/9325264
  33. Epithelial cell functionality on electroconductive Fe/Sr co-doped biphasic calcium phosphate vol.33, pp.8, 2019, https://doi.org/10.1177/0885328218821549
  34. Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration vol.10, pp.1, 2014, https://doi.org/10.3390/jfb10010003
  35. Adverse Effects of Implants in Children and Adolescents: A Systematic Review vol.43, pp.2, 2014, https://doi.org/10.17796/1053-4625-43.2.1
  36. Sliding behavior of zirconia porous implant surfaces against bone vol.107, pp.4, 2014, https://doi.org/10.1002/jbm.b.34204
  37. Structuring of Bioceramics by Micro-Grinding for Dental Implant Applications vol.10, pp.5, 2019, https://doi.org/10.3390/mi10050312
  38. Sandblasting reduces dental implant failure rate but not marginal bone level loss: A systematic review and meta-analysis vol.14, pp.5, 2014, https://doi.org/10.1371/journal.pone.0216428
  39. Development of novel zirconia implant's materials gradated design with improved bioactive surface vol.94, pp.None, 2014, https://doi.org/10.1016/j.jmbbm.2019.02.022
  40. Characterization of Zirconia-Based Ceramics After Microgrinding vol.7, pp.2, 2014, https://doi.org/10.1115/1.4043693
  41. Biological characterization of surface-treated dental implant materials in contact with mammalian host and bacterial cells: titanium versus zirconia vol.9, pp.55, 2014, https://doi.org/10.1039/c9ra06010c
  42. Improvement of the Physical Properties of Guided Bone Regeneration Membrane from Porcine Pericardium by Polyphenols-Rich Pomace Extract vol.12, pp.16, 2014, https://doi.org/10.3390/ma12162564
  43. Bioactive Coating on Titanium Dental Implants for Improved Anticorrosion Protection: A Combined Experimental and Theoretical Study vol.9, pp.10, 2014, https://doi.org/10.3390/coatings9100612
  44. Evaluation of Peri-Implant Bone Grafting Around Surface-Porous Dental Implants: An In Vivo Study in a Goat Model vol.12, pp.21, 2014, https://doi.org/10.3390/ma12213606
  45. Improving the surface energy of titanium implants by the creation of hierarchical textures on the surface via three-dimensional elliptical vibration turning for enhanced osseointegration vol.233, pp.12, 2014, https://doi.org/10.1177/0954411919878306
  46. The effect of hyperlipidemia on bone graft regeneration of peri-implantal created defects in rabbits vol.5, pp.None, 2014, https://doi.org/10.1186/s40729-019-0170-x
  47. The importance of implant-supported overdentures in a bimaxillary complete edentulous patient - case report vol.2, pp.2, 2014, https://doi.org/10.2478/asmj-2019-0011
  48. Lithium-Doped Biological-Derived Hydroxyapatite Coatings Sustain In Vitro Differentiation of Human Primary Mesenchymal Stem Cells to Osteoblasts vol.9, pp.12, 2014, https://doi.org/10.3390/coatings9120781
  49. Unravelling Doped Biphasic Calcium Phosphate: Synthesis to Application vol.2, pp.12, 2014, https://doi.org/10.1021/acsabm.9b00488
  50. I-implant notation system: A fundamental implant location system in clinical dentistry vol.10, pp.1, 2020, https://doi.org/10.4103/jid.jid_57_19
  51. Challenges in Dental Implant Identification and Need of Universal Dental Implant Identification, Numbering, and Nomenclature System vol.10, pp.4, 2014, https://doi.org/10.5005/jp-journals-10019-1291
  52. Investigation of the Early Healing Response to Dicationic Imidazolium-Based Ionic Liquids: A Biocompatible Coating for Titanium Implants vol.6, pp.2, 2014, https://doi.org/10.1021/acsbiomaterials.9b01884
  53. Fretting and Fretting Corrosion Processes of Ti6Al4V Implant Alloy in Simulated Oral Cavity Environment vol.13, pp.7, 2020, https://doi.org/10.3390/ma13071561
  54. Influence of magnetic susceptibility and volume on MRI artifacts produced by low magnetic susceptibility Zr-14Nb alloy and dental alloys vol.39, pp.2, 2020, https://doi.org/10.4012/dmj.2018-426
  55. A Comparison of Photoelastic and Finite Elements Analysis in Internal Connection and Bone Level Dental Implants vol.10, pp.5, 2014, https://doi.org/10.3390/met10050648
  56. Controlling cell viability and bacterial attachment through fabricating extracellular matrix-like micro/nanostructured surface on titanium implant vol.15, pp.3, 2020, https://doi.org/10.1088/1748-605x/ab70ee
  57. Avoiding the Alveolar Nerve Via a Real-Time Impedance Analysis: A Novel Method to Improve Implant Surgery Safety vol.14, pp.2, 2014, https://doi.org/10.1115/1.4046212
  58. Customized Therapeutic Surface Coatings for Dental Implants vol.10, pp.6, 2014, https://doi.org/10.3390/coatings10060568
  59. Micro-/Nanotopography on Bioresorbable Zinc Dictates Cytocompatibility, Bone Cell Differentiation, and Macrophage Polarization vol.20, pp.6, 2014, https://doi.org/10.1021/acs.nanolett.0c01448
  60. A New Insight into Coating’s Formation Mechanism Between TiO 2 and Alendronate on Titanium Dental Implant vol.13, pp.14, 2014, https://doi.org/10.3390/ma13143220
  61. The Surface Morphology and Electrochemical Properties of Pure Titanium Obtained by Selective Laser Melting Method vol.308, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/ssp.308.21
  62. Phase-Selective and Localized TiO2 Coating on Additive and Wrought Titanium by a Direct Laser Surface Modification Approach vol.5, pp.27, 2014, https://doi.org/10.1021/acsomega.0c01671
  63. A peptide coating preventing the attachment of Porphyromonas gingivalis on the surfaces of dental implants vol.55, pp.4, 2014, https://doi.org/10.1111/jre.12737
  64. Development of a Novel Medical Device for Mucositis and Peri-Implantitis Treatment vol.7, pp.3, 2014, https://doi.org/10.3390/bioengineering7030087
  65. A Comprehensive Review on the Corrosion Pathways of Titanium Dental Implants and Their Biological Adverse Effects vol.10, pp.9, 2020, https://doi.org/10.3390/met10091272
  66. Factors Affecting Implant Failure and Marginal Bone Loss of Implants Placed by Post-Graduate Students: A 1-Year Prospective Cohort Study vol.13, pp.20, 2014, https://doi.org/10.3390/ma13204511
  67. Harnessing biomolecules for bioinspired dental biomaterials vol.8, pp.38, 2014, https://doi.org/10.1039/d0tb01456g
  68. Comparison of 3D-Printed Dental Implants with Threaded Implants for Osseointegration: An Experimental Pilot Study vol.13, pp.21, 2014, https://doi.org/10.3390/ma13214815
  69. Number of dental abutments influencing the biomechanical behavior of tooth‒implant-supported fixed partial dentures: A finite element analysis vol.14, pp.4, 2020, https://doi.org/10.34172/joddd.2020.047
  70. The true cost of dental implant tourism: A case report vol.47, pp.11, 2014, https://doi.org/10.12968/denu.2020.47.11.956
  71. Clinical decision-making in diagnosis and treatment of peri-implant diseases and conditions with 2017 Classification System vol.11, pp.2, 2021, https://doi.org/10.4103/jdi.jdi_16_21
  72. Challenges in Bone Tissue Regeneration: Stem Cell Therapy, Biofunctionality and Antimicrobial Properties of Novel Materials and Its Evolution vol.22, pp.1, 2014, https://doi.org/10.3390/ijms22010192
  73. Osseointegration Pharmacology: A Systematic Mapping Using Artificial Intelligence vol.119, pp.None, 2014, https://doi.org/10.1016/j.actbio.2020.11.011
  74. Comparison of implant provision at the Birmingham Dental Hospital with national guidelines vol.12, pp.1, 2014, https://doi.org/10.1308/rcsfdj.2021.8
  75. Application of a Cone-Beam Computed Tomography-Based Index for Evaluating Surgical Sites Prior to Sinus Lift Procedures-A Pilot Study vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/9601968
  76. A Cellular Potts energy-based approach to analyse the influence of the surface topography on single cell motility vol.509, pp.None, 2014, https://doi.org/10.1016/j.jtbi.2020.110487
  77. Atomic layer deposition on dental materials: Processing conditions and surface functionalization to improve physical, chemical, and clinical properties - A review vol.121, pp.None, 2014, https://doi.org/10.1016/j.actbio.2020.11.024
  78. A Novel, Minimally Invasive Method to Retrieve Failed Dental Implants in Elderly Patients vol.11, pp.6, 2014, https://doi.org/10.3390/app11062766
  79. The Effect of Patient Specific Factors on Occlusal Forces Generated: Best Evidence Consensus Statement vol.30, pp.suppl1, 2021, https://doi.org/10.1111/jopr.13334
  80. Effect of Variable Implant Tip Distances on Stress Distribution around the Mental Foramen: A Finite Element Analysis vol.9, pp.4, 2014, https://doi.org/10.3889/oamjms.2021.6407
  81. One-Piece Titanium Implants: Retrospective Case Series vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/6688355
  82. Biocompatibility study of modified injectable hyaluronic acid hydrogel with mannitol/BSA to alveolar bone cells vol.35, pp.10, 2021, https://doi.org/10.1177/0885328220971746
  83. Surface Treatment of the Dental Implant with Hyaluronic Acid: An Overview of Recent Data vol.18, pp.9, 2014, https://doi.org/10.3390/ijerph18094670
  84. Evaluation of the information provided by UK dental practice websites regarding complications of dental implants vol.230, pp.12, 2014, https://doi.org/10.1038/s41415-021-3080-2
  85. Functionalization with a Polyphenol-Rich Pomace Extract Empowers a Ceramic Bone Filler with In Vitro Antioxidant, Anti-Inflammatory, and Pro-Osteogenic Properties vol.12, pp.2, 2021, https://doi.org/10.3390/jfb12020031
  86. The trends of dental biomaterials research and future directions: A mapping review vol.33, pp.5, 2021, https://doi.org/10.1016/j.sdentj.2021.01.002
  87. Factors Influencing Marginal Bone Loss around Dental Implants: A Narrative Review vol.11, pp.7, 2014, https://doi.org/10.3390/coatings11070865
  88. Contemporary Approach to the Porosity of Dental Materials and Methods of Its Measurement vol.22, pp.16, 2014, https://doi.org/10.3390/ijms22168903
  89. Comparative Analysis of Stress and Deformation between One-Fenced and Three-Fenced Dental Implants Using Finite Element Analysis vol.10, pp.17, 2014, https://doi.org/10.3390/jcm10173986
  90. The effect of zirconia and titanium surfaces on biofilm formation and on host-derived immunological parameters vol.50, pp.10, 2014, https://doi.org/10.1016/j.ijom.2021.01.021
  91. Employment of ultrasonic assisted turning in the fabrication of microtextures to improve the surface adhesion of the titanium implant vol.235, pp.12, 2014, https://doi.org/10.1177/09544054211011029
  92. Biocompatibility and Antibiofilm Properties of Samarium Doped Hydroxyapatite Coatings: An In Vitro Study vol.11, pp.10, 2014, https://doi.org/10.3390/coatings11101185
  93. Carbon Nanomaterials Modified Biomimetic Dental Implants for Diabetic Patients vol.11, pp.11, 2021, https://doi.org/10.3390/nano11112977
  94. A comprehensive account of biomedical applications of CVD diamond coatings vol.54, pp.44, 2014, https://doi.org/10.1088/1361-6463/ac0ca2
  95. A deep learning approach for dental implant planning in cone-beam computed tomography images vol.21, pp.1, 2014, https://doi.org/10.1186/s12880-021-00618-z
  96. Effects of low-dose aspirin on the osseointegration process in rats vol.7, pp.1, 2021, https://doi.org/10.1186/s40729-020-00283-x
  97. Outcomes of dental implants in young patients with congenital versus non-congenital missing teeth vol.7, pp.1, 2021, https://doi.org/10.1186/s40729-021-00362-7
  98. A Review on Development of Bio-Inspired Implants Using 3D Printing vol.6, pp.4, 2021, https://doi.org/10.3390/biomimetics6040065
  99. Biomechanical and histological evaluation of four different implant macrogeometries in the early osseointegration process: An in vivo animal study vol.125, pp.None, 2022, https://doi.org/10.1016/j.jmbbm.2021.104935