Abstract
Nanocrystalline diamond(NCD) films on steel(SKH51) has been investigated using SiC interlayer film. SiC was deposited on SKH51 or Si wafer by RF magnetron sputter. NCD was deposited on SiC at $600^{\circ}C$ for 0.5~4 h employing microwave plasma CVD. Film morphology was observed by FESEM and FIB. Film adherence was examined by Rockwell C adhesion test. The growth rate of NCD on SiC/Si substrate was much higher than that on SiC/SKH51. During particle coalescence, NCD growth rate was slow since overall rate was determined by the diffusion of carbon on SiC surface. After completion of particle coalescence, NCD growth became faster with the reaction of carbon on NCD film controlling the whole process. In the case of SiC/SKH51 substrate, a complete NCD film was not formed even after 4 h of deposition. The adhesion test of NCD/SiC/SKH51 samples revealed a delamination of film whereas that of SiC/SKH51 showed a good adhesion. Many voids of less than 0.1 ${\mu}m$ were detected on NCD/SiC interface. These voids were believed as the reason for the poor adhesion between NCD and SiC films. The origin of voids was due to the insufficient coalescence of diamond particles on SiC surface in the early stage of deposition.