DOI QR코드

DOI QR Code

Compensation Characteristics of Distorted WDM Signals Depending on Distribution Patterns of SMF Length and RDPS

SMF 길이와 RDPS의 분포 패턴에 따른 왜곡된 WDM 신호의 보상 특성

  • Lee, Seong-Real (Department of Marine Information and Communication Engineering, Mokpo National Maritime University)
  • 이성렬 (목포해양대학교 해양정보통신공학과)
  • Received : 2014.03.25
  • Accepted : 2014.04.23
  • Published : 2014.04.30

Abstract

For transmitting the ultra-high speed optical signals with better performance, the techniques to suppress or mitigate the signal distortion due to group velocity dispersion and optical Kerr effects are required. Dispersion management (DM), optical phase conjugation, and the combination of these two are promising techniques to compensate for the signal distortion. However, the fixed length of single mode fiber (SMF) and the fixed residual dispersion per span (RDPS) usually used in these optical links restricts flexible link configuration. The goal of this paper is to investigate the possibility of the flexible configurations of the ultra-high and long-haul optical transmission systems by using the artificial and the random distribution of SMF length and RDPS of each fiber spans consisted of the optical link. It is confirmed that the proposed link configurations should be one of the methods suitable for implementing the flexible optical transmission systems, however which depend on other link parameters, such as the averaged RDPS, and the launch power.

고품질 초고속 광 신호 전송을 위해서는 그룹 속도 분산과 비선형 현상에 의한 왜곡을 억제하거나 줄여주는 기술이 필요하다. 가장 대표적인 기술로 분산 제어 (DM; dispersion management), 광 위상 공액 기술과 이 둘을 결합한 기술이 있다. 하지만 이러한 기술들에서 현재 사용되고 있는 단일 모드 광섬유의 고정 길이와 중계 구간 당 잉여 분산 (RDPS; residual dispersion per span)의 고정값은 유연한 링크 구성을 제한하고 있다. 본 연구의 목적은 광전송 링크를 구성하는 모든 중계 구간의 SMF 길이와 RDPS의 인위적 분포와 랜덤 분포를 통한 초고속 장거리 광전송 시스템의 유연한 구성 가능성을 살펴보는 것이다. 전송 링크 전체의 평균 RDPS와 입사 전력과 같은 링크 파라미터에 의존하지만 제안한 링크 구조들이 유연한 광전송 시스템 구성에 유용하다는 것을 확인하였다.

Keywords

References

  1. B. Mikkelsen, G. Raybon, B. Zhu, R.J. Essiambre, P.G. Bernasconi, K. Dreyer, L.W. Stulz, S.N. Knudsen, "High spectral efficiency (0.53 bit/s/Hz) WDM transmission of 160 Gb/s per wavelength over 400 km of fiber," in Technical Digest of OFC 2001, Los Angeles: CA, Paper ThF2, 2001.
  2. T. Ito, K. Fukuchi, K. Sekiya, D. Ogasawara, R. Ohhira, T. Ono, "6.4 Tb/s (160 x 40 Gb/s) WDM transmission experiment with 0.8 bit/s/Hz spectral efficiency," in ECOC 2000, Frankfurt: GER, Postdeadline paper PD1.1, 2000.
  3. J. Kani, K. Hattori, M. Jinno, T. Kanamori, K. Oguchi, "Tripple-wavelength-band WDM transmission over cascaded dispersion-shifted fibers," in Technical Digest of OAA 1999, Nara: Japan, Paper WC2, 1999.
  4. K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasawara, T. Ono, "10.92-Tb/s (273 x 40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment," in Technical Digest of OFC 2001, Los Angeles: CA, Postdeadline paper PD24, 2001.
  5. K. Mukasa, Y. Akasaka, Y. Suzuki, T. Kamiya, "Novel network fiber to manage dispersion at 1.55 ${\mu}m$ with combination of 1.3 ${\mu}m$ zero dispersion single mode fiber," in Proceedings of ECOC 1997, Vol. 1, pp. 127-130, 1997.
  6. T. Kato, M. Hirano, M. Onishi, M. Nishimura, "Ultra-low nonlinearity low-loss pure silica core fibre for long-haul WDM transmission," Electron. Lett. Vol. 35, No. 19, 1999.
  7. M. Tsukitani, T. Kato, E. Yanada, M. Hirano, M. Nakamura, Y. Ohga, M. Onishi, E. Sasaoka, Y. Makio, M. Nishimura, "Low-loss dispersion-flattened hybrid transmission lines consisting of low-nonlinearity pure silica core fibres and dispersion compensating fibres," Electron. Lett. Vol. 36, No. 1, 2000.
  8. T. Naito, N. Shimojoh, T. Tanaka, H. Nakamoto, M. Doi, T. Ueki, M. Suyama, "1 Tb/s WDM transmission over 10,000 km," in ECOC 1999, Nice: France, Postdeadline paper PD2-1, 1999.
  9. J. D. Ania-Castañon, and S. K. Turitsyn, "Noise and gain optimization in bi-directionally pumped dispersion compensating amplifier modules," Opt. Commun., Vol. 224, No. 1-3, pp. 107∼111, 2003. https://doi.org/10.1016/S0030-4018(03)01721-8
  10. A. Yariv, D. Fekete, and D. M. Pepper, "Compensation for channel dispersion by nonlinear optical phase conjugation," Opt. Lett.,Vol. 4, pp. 52-54, 1979. https://doi.org/10.1364/OL.4.000052
  11. A. Chowdhury and R.-J.Essiambre, "Optical phase conjugation and pseudolinear transmission," Opt. Lett., Vol. 29, No. 10, pp. 1105∼1107, 2004. https://doi.org/10.1364/OL.29.001105
  12. S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation," J. Lightwave Technol., Vol. 14, No. 3, pp 243∼248, 1996. https://doi.org/10.1109/50.485581
  13. P. Minzioni and A. Schiffini, "Unifying theory of compensation techniques for intrachannel nonlinear effects," Opt. Express, vol. 13, no. 21, pp. 8460-8468, 2005. https://doi.org/10.1364/OPEX.13.008460
  14. S. R. Lee, S. E. Cho, "NRZ versus RZ modulation format in lumped dispersion managed systems," J. The Korea Institute of Maritime Information & Communication Sciences, Vol. 12, No. 2, pp. 327-335, 2008.
  15. G. P. Agrawal, Nonlinear fiber optics, 3rd ed. San Francisco:CA, Academic Press, 2001.

Cited by

  1. 분산 제어와 Mid-Span Spectral Inversion이 적용된 광전송 링크에서 반 전송 구획의 잉여 분산이 전체 잉여 분산에 미치는 영향 vol.18, pp.5, 2014, https://doi.org/10.12673/jant.2014.18.5.455
  2. 랜덤 분포 구조의 분산 제어 광전송 링크에서 RDPS의 편차가 왜곡된 WDM 채널의 보상에 미치는 영향 vol.19, pp.2, 2014, https://doi.org/10.12673/jant.2015.19.2.147