DOI QR코드

DOI QR Code

Design and Implementation of Synchronization Unit for AeroMACS System

AeroMACS 시스템을 위한 동기화기 설계

  • Jang, Soohyun (School of Electronics, Telecommunication and Computer Eng., Korea Aerospace University) ;
  • Lee, Eunsang (Hyundai Motor Group) ;
  • Jung, Yunho (School of Electronics, Telecommunication and Computer Eng., Korea Aerospace University)
  • 장수현 (한국항공대학교 항공전자 및 정보통신 공학부) ;
  • 이은상 (현대자동차) ;
  • 정윤호 (한국항공대학교 항공전자 및 정보통신 공학부)
  • Received : 2014.03.11
  • Accepted : 2014.03.29
  • Published : 2014.04.30

Abstract

In this paper, the performance analysis results of time/frequency synchronization and cell search algorithm are presented for aeronautical mobile airport communication systems (AeroMACS). AeroMACS is based on IEEE 802.16e mobile WiMAX standard and uses the aeronautical frequency band of 5GHz with the bandwidth of 5MHz. The simulation model of AeroMACS is designed and the performance evaluation is conducted with the various airport channel models such as apron (APR), runway (RWY), taxiway (TWY), and park (PRK). The proposed synchronization unit was designed in hardware description language (HDL) and implemented on FPGA. Also, the real-time operation was verified and evaluated using FPGA test system.

본 논문에서는 항공관제통신용 AeroMACS 시스템을 위한 시간/주파수 동기 획득 및 기지국 셀탐색 알고리즘을 분석하고, AeroMACS 채널 모델에서 동기 알고리즘의 성능 평가를 진행하였다, 그리고, 상기 알고리즘을 이용한 AeroMACS 시스템용 동기화기를 설계 및 구현하였다. AeroMACS 시스템은 IEEE 802.16e mobile WiMAX 규격에 기반 된 시스템이나, WiMAX 시스템과 달리 5GHz 항공 주파수 대역에서 5MHz의 대역폭을 활용하여 통신을 수행한다. 변경된 사양에 따른 시스템 모델링 후에 apron (APR), runway (RWY), taxiway (TWY), park (PRK) 등 다양한 공항 환경에 대한 채널 모델에 기반하여 시간 및 주파수 동기 알고리즘 및 셀 탐색 알고리즘의 성능 평가를 수행하였다. 그리고, 이를 FPGA 기반 실시간 구현 및 검증하였다.

Keywords

References

  1. E. S. Lee, K. G. Sohn, Y. O. Park, and Y. H. Jung, "Performance analysis of timing synchronization scheme for AeroMACS system," The Journal of Korea Navigation Institute, Vol. 16, No. 2, pp. 255-263, Apr. 2012. https://doi.org/10.12673/jkoni.2012.16.2.255
  2. E. Hall, J. Budinger, R. Dimond, J. Wilson and R. Apaza, "Aeronautical mobile airport communications system development status," in Proceeding of Integrated Communications, Navigation and Surveilance Conference, Herndon: VA, pp. A4-1 - A4-15, 2010.
  3. H. Corporation, Aeronautical mobile airport communications system profile, RTCA SC-223. Mar. 2011.
  4. T. M. Schmidl and D.C. Cox, "Robust frequency and timing synchronization for OFDM," IEEE Transactions on Communications, Vol. 45, No. 12, pp. 1613 - 1621, Dec. 1997. https://doi.org/10.1109/26.650240
  5. J. J. Van de Beek, M. Sandell and P. O. Borjesson, "ML estimation of time and frequency offset in OFDM systems," IEEE Transactions on Communications, Vol. 45, No. 7, pp.1800-1805, July. 1997.
  6. IEEE standard for local and metropolitan area networks Part 16, IEEE std 802.16e, Mar. 2006.
  7. E. Seagraves, C. Berry and Feng Qian, "Robust mobile WiMAX preamble detection," in Proceeding of Military Communications Conference, San Diego: CA, pp. 1-7, 2008.
  8. S. Muller-Weinfurtner, "On the optimality of metrics for coarse frame synchronization in OFDM : a comparison," in Proceeding of the 9th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 533-537, Boston: MA, 1998.
  9. P. Pulini, "Forward link performance analysis for the future IEEE 802.16-based airport data link," in Proceeding of IEEE International Conference on Communications, Cape Town: RSA, pp. 1-5, 2010.

Cited by

  1. IEEE 802.16 표준 기반 시스템을 위한 추가적인 프리앰블 정의 vol.19, pp.3, 2016, https://doi.org/10.9766/kimst.2016.19.3.356