DOI QR코드

DOI QR Code

CFD-based Thrust Analysis of Unmanned Aerial Vehicle in Hover Mode: Effects of Single Rotor Blade Shape

무인비행체 블레이드 형상 변화에 따른 단일로터의 제자리 비행 추력성능 분석

  • Yun, Jae Hyun (School of Mechanical Engineering, Yonsei Univ.) ;
  • Choi, Ha-Young (Dept. of Mechanical Engineering Dongyang Mirae Univ.) ;
  • Lee, Jongsoo (School of Mechanical Engineering, Yonsei Univ.)
  • 윤재현 (연세대학교 기계공학부) ;
  • 최하영 (동양미래대학교 기계공학부) ;
  • 이종수 (연세대학교 기계공학부)
  • Received : 2013.09.25
  • Accepted : 2014.03.08
  • Published : 2014.05.01

Abstract

An unmanned aerial vehicle (UAV) should be designed to be as small and lightweight as possible to optimize the efficiency of changing the blade shape to enhance the aerodynamic performance, such as the thrust and power. In this study, a computational fluid dynamics (CFD) simulation of an unmanned multi-rotor aerial vehicle in hover mode was performed to explore the thrust performance in terms of the blade rotational speed and blade shape parameters (i.e., taper ratio and twist angle). The commercial ADINA-CFD program was used to generate the CFD data, and the results were compared with those obtained from blade element theory (BET). The results showed that changes in the blade shape clearly affect the aerodynamic thrust of a UAV rotor blade.

무인비행체는 소형화, 경량화가 중요하기 때문에 동력장치에 한계가 있다. 공력성능을 향상을 위해 항공기의 크기나 무게에 영향을 주지 않는 블레이드의 형상의 변화를 주는 것이 가장 효율적이다. 본 연구에서는 제자리 비행을 하는 멀티로터 무인비행체에 있어 단일 로터 블레이드의 테이퍼 비율, 비틀림 각도 등에 따른 추력성능의 변화를 전산유동해석 시뮬레이션을 통해 수행하였다. 전산유동해석 코드인 ADINA-CFD 를 통해 얻은 수치 결과를 깃 요소 이론(blade element theory, BET)과 비교하였으며, 블레이드의 형상 변화가 추력성능에 영향을 미치는 것을 확인하였다.

Keywords

References

  1. Aleksandrov, D. and Penkov, I., 2013, "Optimization of Lift Force of Mini Quadrotor Helicopter by Changing of Gap Size Between Rotors," Solid State Phenomena, Vol.198, pp.226-231 https://doi.org/10.4028/www.scientific.net/SSP.198.226
  2. Thipuopas, C., 2010, "Survey of Micro air Vehicles in an International Even & Utilization in Thailand," The First TSME International Conference on Mechanical Engineering.
  3. Yun, J. H., Ko, J. C. and Lee, J., 2012, "Aerodynamic Performance Analysis of Fan-Bladed Rotors in Tandem Arrangement," The Korean Society of Mechanical Engineers Spring Annual Meeting, pp.331-334.
  4. ADINA System 8.8 Release Notes, 2012, ADINA R&D, Inc.
  5. Punds, P., Mahony, R., Corke, P., 2010, "Modelling and Control of a Large Quadrotor Robot," Control Engineering Practice, Vol.18, No.7, pp. 691-699. https://doi.org/10.1016/j.conengprac.2010.02.008
  6. Kovalovs, A., Barkanov, E. and Gluhihs, S., 2007, "Numerical Optimization of Helicopter Rotor Blade Design for Active Twist Control," Taylor & Francis, Vol. 11, Issue. 3, pp. 3-9.
  7. Kim, T. H., An, S. J., Jo, Y, D., Moon, K.M., Bae, B. Y. and Yang, D, H., 2009, "A Study on the Composite Blade Performance Variation by Attaching Erosion Shield for Hovercraft," Journal of the Korean Society of Marine Engineering, Vol. 33, No. 7, pp. 1017-1025. https://doi.org/10.5916/jkosme.2009.33.7.1017
  8. Steijl, R. and Barakos, G., 2007, "CFD Analysis of Rotor-Fuselage Interactional Aerodynamics," 45th AIAA Aerospace Sciences Meeting and Exhibit, p. 1278.
  9. Kim, C. S., Kim, C. A. and Rho, O. H., 1999, "Incompressible/Compressible Flow Analysis over High-Lift Airfoils Using Two-Equation Turbulence Models," Korean Society for Computational Fluids Engineering, Vol. 4, No. 1.
  10. Pounds, P., Mahony, R., Gresham, J., Corke, P. and Roberts, J., 2004, "Towards Dynamically-Favourable Quad-Rotor Aerial Robots," In Proceedings of the 2004 Australasian Conference on Robotics & Automation. Australian Robotics & utomation Association.
  11. Naidoo, Y., Stopforth, R. and Bright, G., 2004, "Quad-Rotor Unmanned Aerial Vehicle Helicopter Modelling & Control," International Journal of Advanced Robotic System, Vol. 8, No. 4, pp. 139-149.
  12. Abbott, I. H. and Von Doenhoff, A.E., 1959, Theory of Wing Sections: Including a Summary of Airfoil Data, Dover Publications.

Cited by

  1. Altitude and roll control of a hovering quad-rotor air vehicle using the multi-objective approximate optimization of proportional–integral–differential control vol.49, pp.10, 2017, https://doi.org/10.1080/0305215X.2016.1265201
  2. Parameter analysis and design for the hovering thrust of a quad-rotor air vehicle using CFD and design of experiment vol.32, pp.2, 2018, https://doi.org/10.1007/s12206-018-0126-0