초록
단위 영역의 결점수는 일반적으로 Poisson 분포를 가정한다. 이 Poisson 분포의 확장된 형태로 ZIP(zero-inflated Poisson) 분포를 고려할 수 있는데, 이 모형은 데이터에 0이 많이 관측되는 경우 잘 적합된다고 알려져 있다. 이 논문에서는 ZIP 분포를 따르는 공정을 관리하는 GLR(generalized likelihood ratio) 관리도 절차를 제안하고 있다. 또한 제안된 GLR 관리도의 효율을 기존에 제안된 CUSUM 관리도들과 비교하였다. 그 결과 제안된 GLR 관리도는 모수의 다양한 변화에 대해 효율이 좋거나 또는 효율이 크게 떨어지지 않았고, 특히 CUSUM 관리도에서 모수가 미리 설정한 방향과 다르게 변화했을 때 효율이 크게 나빠지는 문제를 해결할 수 있는 대안이라는 결론을 얻을 수 있었다.
The number of nonconformities in a unit is commonly modeled by a Poisson distribution. As an extension of a Poisson distribution, a zero-inflated Poisson(ZIP) process can be used to fit count data with an excessive number of zeroes. In this paper, we propose a generalized likelihood ratio(GLR) chart to monitor shifts in the two parameters of the ZIP process. We also compare the proposed GLR chart with the combined cumulative sum(CUSUM) chart and the single CUSUM chart. It is shown that the overall performance of the GLR chart is comparable with CUSUM charts and is significantly better in some cases where the actual directions of the shifts are different from the pre-specified directions in CUSUM charts.