DOI QR코드

DOI QR Code

우울증에 대한 예측모형

A Prediction Model for Depression Risk

  • 김재용 (서울대학교 통계학과) ;
  • 민병주 (서울대학교 통계학과) ;
  • 이재훈 (서울대학교 통계학과) ;
  • 장재승 (분당서울대학교 정신건강의학과) ;
  • 하태현 (분당서울대학교 정신건강의학과) ;
  • 하규섭 (분당서울대학교 정신건강의학과) ;
  • 박태성 (서울대학교 통계학과)
  • Kim, Jaeyong (Department of Statistics, Seoul National University) ;
  • Min, Byungju (Department of Statistics, Seoul National University) ;
  • Lee, Jaehoon (Department of Statistics, Seoul National University) ;
  • Chang, Jae Seung (Department of Psychiatry, Seoul National University Bundang Hospital) ;
  • Ha, Tae Hyon (Department of Psychiatry, Seoul National University Bundang Hospital) ;
  • Ha, Kyooseob (Department of Psychiatry, Seoul National University Bundang Hospital) ;
  • Park, Taesung (Department of Statistics, Seoul National University)
  • 투고 : 2014.01.03
  • 심사 : 2014.03.24
  • 발행 : 2014.04.30

초록

양극성 장애는 조증 삽화(manic episode)와 주요 우울삽화(major depressive episode)를 특징으로 하는 정신질환이다. 주요 우울삽화 시기에는 양극성 장애 환자들의 810%가 자살하는 것으로 알려져 있다. 그러므로 양극성 장애 환자를 치료할 때, 우울증상의 정도를 측정하는 것이 중요하다. 우울증상의 정도를 측정하기 위해 가장 많이 사용하는 검사법은 해밀턴 우울평가 척도(Hamilton depression rating scale)이다. 본 논문에서는 해밀턴 우울평가척도 점수를 이용하여 환자들의 치료 효과를 예측하기 위해 선형혼합효과모형(linear mixed effects model)과 전이모형(transition model)을 제시하였다. 예측을 위해 사용된 자료는 분당서울대학교병원을 방문하여 초진일 당시의 해밀턴 우울평가 척도 점수가 8 점 이상인 환자들의 정보를 사용하였다. 첫 조사시점부터 6개월, 12개월 후 세 차례에 걸쳐 관측된 해밀턴 우울평가 척도 점수를 선형혼합효과모형과 전이모형에 적합시켰다. 그 결과를 토대로 특정시점의 해밀턴 우울평가 척도 점수를 예측하였다. 첫 조사시점부터 6개월, 12개월 후의 해밀턴 우울평가 척도 점수를 사용해 선형혼합효과모형과 전이모형에 적합 시켰다. 이 모델들을 이용해 조사시점부터 24개월 후의 해밀턴 우울평가 척도 점수를 예측한다. 이 예측모델은 조사된 24개월 후의 점수와 예측된 24개월의 후의 점수를 비교하여 평가하였다.

Bipolar disorder is a psychopathy characterized by manic and major depressive episodes. It is important to determine the degree of depression when treating patients with bipolar disorder because 810% of bipolar patients commit suicide during the periods in which they experience major depressive episodes. The Hamilton depression rating scale is most commonly used to estimate the degree of depression in a patient. This paper proposes using the Hamilton depression rating scale to estimate the effectiveness of patient treatment based on the linear mixed effects model and the transition model. Study subjects were recruited from the Seoul National University Bundang Hospital who scored 8 points or above in the Hamilton depression rating scale on their first medical examination. The linear mixed effects model and the transition model were fitted using the Hamilton depression rating scales measured at the baseline, six month, and twelve month follow-ups. Then, Hamilton depression rating scale at the twenty-four month follow-up was predicted using these models. The prediction models were then evaluated by comparing the observed and predicted Hamilton depression rating scales on the twenty-four month follow-up.

키워드

참고문헌

  1. Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19, 716-723. https://doi.org/10.1109/TAC.1974.1100705
  2. Berk, M., Malhi, G. S., Cahill, C., Carman, A. C., Hadzi-Pavlovic, D., Hawkins, M. T., Tohen, M. and Mitchell, P. B. (2007). The Bipolar Depression Rating Scale (BDRS): its development, validation and utility, Bipolar Disorders, 9, 571-579. https://doi.org/10.1111/j.1399-5618.2007.00536.x
  3. Bland, R. C. (1992). Psychiatric Disorders in America: The Epidemiologic Catchment Area Study, Journal of Psychiatry and Neuroscience, 17, 34.
  4. Bowden, C. L. (2001). Strategies to reduce misdiagnosis of bipolar depression, Psychiatric Services, 52, 51-55. https://doi.org/10.1176/appi.ps.52.1.51
  5. Bonney, G. E. (1987). Logistic regression for dependent binary observations, Biometrics, 951-973.
  6. Davis, C. S. (2002). Statistical Methods for the Analysis of Repeated Measurements, Springer texts in statistics, Springer, New York.
  7. Demyttenaere, K. and De Fruyt J. (2003). Getting what you ask for: on the selectivity of depression rating scales, Psychotherapy and Psychosomatics, 72, 61-70. https://doi.org/10.1159/000068690
  8. Diggle, P. (2002). Analysis of Longitudinal Data, Oxford University Press, USA.
  9. Doehrmann, O., Ghosh, S. S., Polli, F. E., Reynolds, G. O., Horn, F., Keshavan, A., Triantafyllou, C., Saygin, Z. M., Whitfield-Gabrieli, S., Hofmann, S. G., Pollack, M. and Gabrieli, J. D. (2013). Predicting treatment response in social anxiety disorder from functional magnetic resonance imaging, The American Journal of Psychiatry, 70, 87-97
  10. Fahrmeir, L. and Kaufmann, H. (1987). Regression models for non-stationary categorical time series, Journal of Time Series Analysis, 8, 147-160. https://doi.org/10.1111/j.1467-9892.1987.tb00429.x
  11. Fahrmeir, L. and Lang, S. (2001). Bayesian inference for generalized additive mixed models based on Markov random field priors, Journal of the Royal Statistical Society: Series C (Applied Statistics), 50, 201-220. https://doi.org/10.1111/1467-9876.00229
  12. Hamilton, M. (1960). A rating scale for depression, Journal of Neurology, Neurosurgery, and Psychiatry, 23, 56. https://doi.org/10.1136/jnnp.23.1.56
  13. Hamilton, M. (1966). Assessment of change in psychiatric state by means of rating scales, Proceedings of the Royal Society of Medicine, 59(Suppl 1), 10.
  14. Hamilton, M. (1967). Development of a rating scale for primary depressive illness, British Journal of Social and Clinical Psychology, 6, 278-296. https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
  15. Hamilton, M. (1969). Standardised assessment and recording of depressive symptoms, Psychiatria, Neurologia, Neurochirurgia, 72, 201.
  16. Hamilton, M. (1980). Rating depressive patients, Journal of Clinical Psychiatry.
  17. Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection in small samples, Biometrika, 76, 297-307. https://doi.org/10.1093/biomet/76.2.297
  18. Kalbfleisch, J. and Lawless, J. F. (1985). The analysis of panel data under a Markov assumption, Journal of the American Statistical Association, 80, 863-871. https://doi.org/10.1080/01621459.1985.10478195
  19. Kessler, R. C., McGonagle, K. A., Zhao, S., Nelson, C. B., Hughes, M., Eshleman, S., Wittchen, H. U. and Kendler, K. S. (1994). Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: Results from the National Comorbidity Survey, Archives of General Psychiatry, 51, 8. https://doi.org/10.1001/archpsyc.1994.03950010008002
  20. Korn, E. L. and Whittemore, A. S. (1979). Methods for analyzing panel studies of acute health effects of air pollution, Biometrics, 35, 795-802. https://doi.org/10.2307/2530111
  21. Lafortune, S. and Wong, E. (1986). A state transition model for distributed query processing, ACM Transactions on Database Systems (TODS), 11, 294-322. https://doi.org/10.1145/6314.6460
  22. Leverich, G. S., Post, R. M., Keck, P. E. Jr., Altshuler, L. L., Frye, M. A., Kupka, R. W., Nolen, W. A., Suppes, T., McElroy, S. L., Grunze, H., Denicoff, K., Moravec, M. K. and Luckenbaugh, D. (2007). The poor prognosis of childhood-onset bipolar disorder, The Journal of Pediatr, 150, 485-490. https://doi.org/10.1016/j.jpeds.2006.10.070
  23. Marangell, L. B., Dennehy, E. B., Miyahara, S., Wisniewski, S. R., Bauer, M. S., Rapaport, M. H. and Allen, M. H. (2009). The functional impact of subsyndromal depressive symptoms in bipolar disorder: Data from STEP-BD, Journal of Affective Disorders, 114, 58-67. https://doi.org/10.1016/j.jad.2008.07.006
  24. McCulloch, C. E. and Neuhaus, J. M. (2001). Generalized Linear Mixed Models, Wiley Online Library.
  25. Milev, P., Ho, B. C., Arndt, S. and Andreasen, N. C. (2005). Predictive values of neurocognition and negative symptoms on functional outcome in schizophrenia: a longitudinal first-episode study with 7-year followup, The American Journal of Psychiatry, 162, 495-506. https://doi.org/10.1176/appi.ajp.162.3.495
  26. Montgomery, S. A. and Asberg, M. (1979). A new depression scale designed to be sensitive to change, The British Journal of Psychiatry, 134, 382-389. https://doi.org/10.1192/bjp.134.4.382
  27. Muenz, L. R. and Rubinstein, L. V. (1985). Markov models for covariate dependence of binary sequences, Biometrics, 41, 91-101. https://doi.org/10.2307/2530646
  28. Osby, U., Brandt, L., Correia, N., Ekbom, A. and Sparen, P. (2001). Excess mortality in bipolar and unipolar disorder in Sweden, Archives of General Psychiatry, 58, 844. https://doi.org/10.1001/archpsyc.58.9.844
  29. Ozerdem, A., Tunca, Z. and Kaya, N. (2001). The relatively good prognosis of bipolar disorders in a Turkish bipolar clinic, Journal of Affective Disorder, 64, 27-34. https://doi.org/10.1016/S0165-0327(00)00171-3
  30. Rehm, L. P. and O'Hara, M. W. (1985). Item characteristics of the Hamilton rating scale for depression, Journal of Psychiatric Research, 19, 31-41. https://doi.org/10.1016/0022-3956(85)90066-4
  31. Sadock, B. J., Kaplan, H. I. and Sadock, V. A. (2007). Kaplan & Sadock's Synopsis of Psychiatry: Behavioral Sciences/Clinical Psychiatry, Lippincott Williams & Wilkins.
  32. Schiffer, R. (2007). Psychiatric Disorders in Medical Practice, Cecil Medicine, 23rd ed., Saunders Elsevier, Philadelphia, 420.
  33. Schwarz, G. (1978). Estimating the dimension of a model, The Annals of Statistics, 6, 461-464. https://doi.org/10.1214/aos/1176344136
  34. Searle, S. R., Casella, G. and McCulloch, C. E. (1992). Variance Components, Wiley Online Library.
  35. Spearing, M. K., Post, R. M., Leverich, G. S., Brandt, D. and Nolen, W. (1997). Modification of the Clinical Global Impressions (CGI) Scale for use in bipolar illness (BP): The CGI-BP, Psychiatry Research, 73, 159-171. https://doi.org/10.1016/S0165-1781(97)00123-6
  36. Tohen, M., Waternaux, C. M. and Tsuang, M. T. (1990). Outcome in mania: A 4-year prospective follow-up of 75 patients utilizing survival analysis, Archives of General Psychiatry, 47, 1106. https://doi.org/10.1001/archpsyc.1990.01810240026005
  37. Tondo, L., Baldessarini, R. J. and Floris, G. (2001). Long-term clinical effectiveness of lithium maintenance treatment in types I and II bipolar disorders, The British Journal of Psychiatry: The Journal of Mental Science, 178(Suppl 41), 184-190.
  38. Treuer, T. and Tohen, M. (2010). Predicting the course and outcome of bipolar disorder: A review, European Psychiatry, 25, 328-333
  39. Vonesh, E. F. and Chinchilli, V. M. (1997). Linear and Nonlinear Models for the Analysis of Repeated Measurements, CRC Press, 154.
  40. Young, R. C., Biggs, J. T., Ziegler, V. E. and Meyer, D. A. (1978). A rating scale for mania: Reliability, validity and sensitivity, The British Journal of Psychiatry, 133, 429-435. https://doi.org/10.1192/bjp.133.5.429
  41. Zeger, S. L. and Qaqish, B. (1988). Markov regression models for time series: A Quasi-likelihood approach, Biometrics, 44, 1019-1031. https://doi.org/10.2307/2531732