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] S In this paper, we investigate the properties of L-lower approximation operators as a general-
ization of fuzzy rough set in complete residuated lattices. We study relations lower (upper,

join meet, meet join) approximation operators and Alexandrov L-topologies. Moreover, we

give their examples as approximation operators induced by various L-fuzzy relations.
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1. Introduction

Pawlak [1, 2] introduced rough set theory as a formal tool to deal with imprecision and
uncertainty in data analysis. H4jek [3] introduced a complete residuated lattice which is
an algebraic structure for many valued logic. Radzikowska and Kerre [4] developed fuzzy
rough sets in complete residuated lattice. Bélohldvek [5] investigated information systems and
decision rules in complete residuated lattices. Lai and Zhang [6, 7] introduced Alexandrov
L-topologies induced by fuzzy rough sets. Kim [8, 9] investigate relations between lower
approximation operators as a generalization of fuzzy rough set and Alexandrov L-topologies.
Algebraic structures of fuzzy rough sets are developed in many directions [4, 8, 10]

In this paper, we investigate the properties of L-lower approximation operators as a gener-
alization of fuzzy rough set in complete residuated lattices. We study relations lower (upper,
join meet, meet join) approximation operators and Alexandrov L-topologies. Moreover, we
give their examples as approximation operators induced by various L-fuzzy relations.
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(2) The unit interval with a left-continuous t-norm ©,
([07 ]‘]) \/7 /\7 ®) %’ O? 1)7
is a complete residuated lattice defined by

ac—>y:\/{z|ac®z§y}.

In this paper, we assume (L, A,V,®,—,* L, T) is a com-
plete residuated lattice with the law of double negation;i.e.
2** =g . Fora € L,A, T, € LX,

(a = A)(z) =a— Az), (a@A)(z)=a6 A(x)

and

va(m) = Ta Tm(y) = J_, otherwise.

Lemma 1.3. [3, 5] For each z,y, z,z;,y; € L, we have the
following properties.

Ity <z (zoy) <
z—=x<y— .

2)z0y<zAy<aVy.

3) = = (Nier ¥i) = Nier(@ = i) and (V;p
Nier(@i = y).

@ 2= (Vier i) = Vier(® = vi)

) (/\iel‘ mi) -y \/ier(wi — y)-

6) (z0y) mz=2x—>(y—=2)=y— (z = 2).

MNzo(x—=y) <yzrz—y<(y—z) — (x—z)and

(x©®z2),r >y <z — zand

Ti) >y =

r—oy<(z—z)—=(z—>y).
®y<z—o(zoy)andz < (z—y) >y
D z—oy<(z0z)— (Yo 2).

(10) (z =y) Oy —2) <z — 2
(a1 z—-y=Tiffz <y.

12) x »y=y* — z*.

(13) (z®
(4 Ajer 27 = (Vier

Definition 1.4. [8, 9]

yr'=z—y =y—asadz—y=(z0y")"

z;)* and \/zGF r; = (/\ieF T)*.

(1) Amap H : LX — L¥ is called an L-upper approxima-
tion operator iff it satisfies the following conditions

(H1) A <H(A),
(H2) H(a ©® A) = a ® H(A) where a(z) = « for all
reX,
(H3) ’H(\/ief Ai) = Vie[ H(Ai)~
(2) Amap J : LX — LX is called an L-lower approxima-
tion operator iff it satisfies the following conditions
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an gA) <A
@) J(la—= A)=a— J(A),
(3) T(Nier Ai) = Nier T(Ai).
(3) Amap K : LX — L¥ is called an L-join meet approxi-
mation operator iff it satisfies the following conditions

(K1) K(A) < A,
K2) K(a®A)=a— K(A),
(K3) K:(\/'LEI ) = /\ie] K(Ai)‘
(4) Amap M : LX — LX is called an L-meet join approxi-
mation operator iff it satisfies the following conditions

M1) A* < M(A),
M2) M(a— A) =a e M(A),
(M3) M(/\ie] Ai) = \/iel M(AZ)

Definition 1.5. [6, 9] A subset 7 C L¥ is called an Alexandrov
L-topology if it satisfies:

(T1) Lx,Tx € 7 where T x(z) = 1 for
reX.

(T2) If Ay e fori € T, \/,cp Ais Njer Ai €7

(T3) a®@Aerforallaw € Land A € 7.

(T4) o - Aectforalla € Land A € 7.

=T and Lx(x)

Theorem 1.6. [8, 9]

(1) 7 is an Alexandrov topology on X iff 7, = {A* € LX |
A € 7} is an Alexandrov topology on X.

(2) If H is an L-upper approximation operator, then 7y =

{A € LX | H(A) = A} is an Alexandrov topology on
X.

(3) If J is an L-lower approximation operator, then 77 =
{A e LX | J(A) = A} is an Alexandrov topology on
X.

(4) If K is an L-join meet approximation operator, then 7 =
{A € LX | K(A) = A*} is an Alexandrov topology on
X.

(5) If M is an L-meet join operator, then 7oy = {4 € L |
M(A) = A*} is an Alexandrov topology on X.

Definition 1.7. [8, 9] Let X be aset. A function R : X x X —
L is called:

(R1) reflexive if R(z,xz) =T forallz € X,

(R2) symmetricif R(z,z) =T forallz € X,

(R3) transitive if R(x,y)®OR(y, z) < R(z, z),forall z,y,z €
X.
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(R4) Euclideanif R(x,2)OR(y,z) < R(x,y),forallz,y,z €
X.

If R satisfies (R1) and (R3), R is called a L-fuzzy preorder.
If R satisfies (R1), (R2) and (R3), R is called a L-fuzzy

equivalence relation

2. The Properties of L-lower Approximation Op-
erators

Theorem 2.1. Let 7 : LX — L be an L-lower approxima-
tion operator. Then the following properties hold.

(1) For A € L*, T(A)(y) = Noex (T (T2)(y) = A(2)).
(2) Define Hy(B) = N{A | B < J(A)}. Then H; :
LX — LX with

Ha(B)(z) = \/ (T (TH)(y) © B(y))

yeX

is an L-upper approximation operator such that (s, J)
is a residuated connection;i.e.,

#,(B) < A iff B< J(A).

Moreover, 77 = Ty, .

(3) If J(J(A)) = J(A) for A € LX, then H;(H(A)) =
H(A) for A € LX such that 77 = 75, with

77 ={7(A4) = \ (T (T)) = A@) | A e L¥Y,

reX

T, = {H(A)(a)
=\ (7 (T)) @ AWw)) | A € LX),

yeX

@) If T(T*(A)) = T*(A) for A € L, then J(J (A)) =
J (A) such that

{T*(A) = Vyex(A* () 0 T*(T3) | A L*}
=77 = (T7)x-

(5) Define H4(A) = J(A*)*. Then H, : LX — L with

Hs(B)(x) = \/ (T*(T;)(=) © B(y))

yex

is an L-upper approximation operator. Moreover, 73, =

(T7) = (T3, )x-
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6) If J(J(A)) = J(A) for A € LX, then
Hs (Hs (A)) =H, (A)
for A € LX such that 7o, = (77)« = (T3, )«. With

V (77 (T;) 0 Aly) | Ae LY},

yeX

(1) It J(T*(A)) = T*(A) for A € LX, then

(8) Define K j(A) = J(A*). Then K : L* — L with

Ks(A) = A\ (Al) = T(T3)

yeX
is an L-join meet approximation operator.
9 If J(J(A) = J(A) for A € LX, then
K (K5(A4)) = K5(A)

for A € L such that 7., = (77), with

e, = {K5(A) = \/ (T (T;) © Aly)) | Ae L¥Y.

yex
(10) If T(T*(A)) = T*(A) for A € LX, then
Ki(Ks(A)) = K;5(A)
such that

{Ks(A) = N\yex(Aly) = T(T5)) | A€ L*}
=TK,; = (T’CJ)*'

(11) Define M ;(A) = (J(A))*. Then My : L* — LX
with

MiA)y) =\ (A" (@) 0 T (T2)(y))

reX
is an L-meet join approximation operator. Moreover,
TM; =T7-
(12) f T (J(A)) = J(A) for A € LX, then M ;(M*(A)) =
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M ;(A) for A € LY such that 7oy, = (77). with

(M3 = N\ (T (T — Alz) | Ae LY}

zeX

=TM; = (TJ)*'

(13) It T(T*(A)) = T*(A) for A € L, then
M (M (A)) = M5(A)

such that
™M, =

= {MJ(A)(y) =V @@ oI (THw) |

xeX
AeLX}.

(14) Define Ky, (A) = (Hs(A))*. Then Ky, : LY — L
with

Ki, (D)) = )\ (Alz) = T (T})(x))

zeX

is an L-meet join approximation operator. Moreover,

T’CHJ =T7.

(15) If (T (A)) = J(A) for A € L, then
K:HJ(K:;IJ(A» = ICHJ
for A € L such that Ticw, = (T7)« with

TKu, = {’C;IJ (v)
=\ (7*(T)) (=) © A*(x)) | A€ L*}.

zeX
(16) If Hj(H%(A)) = H5(A) for A € LX, then
Ku,(Ku,) =Ky, (A)
such that

Tu,; = (TKHJ)*

={Ku,(A)(y)
= N\ (@) = J(T(@) | A e L¥}.
reX

(17) Define My, (A) = H;(A*). Then My, : LX — LX

www.ijfis.org

with

M, (A)(y) =\ (A"(2) © T*(T;) ()

zeX

is an L-join meet approximation operator. Moreover,
TMu, = (Tj)*'
(18) If 7(J(A)) = J(A) for A € LX, then

M, (Miy, (A)) = M, (A)

for A € L such that My, = (T7) with

i, = MG, (A)(v)
= N\ (T (T))(@) = A(z)) | A e L¥}.

zeX
(19) If M (H5(A)) = H3(A) for A € LY, then
M, (M, (A)) = My, (4)
such that

My, = (TMH‘,)*

(A*(z) © TH(T)(x)) [ A€ L¥}.

zeX

(20) (Kp,,Ky) is a Galois connection;i.e,
A< Kpg,(B) iff B<K;(A).

Moreover, 7ic, = (Ticy,, )«

21) (M, Mpy,) is a dual Galois connection;i.e,
My, (A) < B iff M (B) < A.

Moreover, Tat, = (T, )s-
Proof.
(1) Since A = A\, x(A*(z) — T}), by (J2) and (J3),

T(A)) = N\ (A @) = T(TH®)

reX

>

(T (T2 (y) = A()).

rzeX

@) Since B(y) < T(A)(y) = Apex (T*(T2)(y) = Al@))
IV, (7*(T2)(9) © B(y)) < Alx), we have

Hy(B)(x) = \/ (T*(T3)(y) © B(y)).

yey
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(H1) Since H;(A) < Hy(A)iff A < T(Hs(4)), we
have A < J(Hs(A)) < H;(A).
(H2) a®A < J(Hs(a® A))
iff A<a— JHs(a® A))
=J(a— J(Hs(a® A)))
iff Hy(A)<a—Hjlao A
iff a©Hyj(A) <Hjla® A).

A< TMHs(A)
<Jla—=a0H;A)=a— T(aeH;(A)
iff a0 A< T(a6H(A)

iff HJ(CL@A) < a@HJ(A).

(H3) By the definition of #,, since H (A) < H;(B)
for B < A, we have

\/ Ho(4) <Hi(\/ A).

ier i€l
Since J (V,;cpr H(Ai)) > T(Hi(Ai)) > A, then
I Vier Hi(Ai)) > Vier Ai. Thus

\/ H(Ai) > HJ(\/ Ai).

i€l el

Thus H; : LX — L¥ is an L-upper approximation
operator. By the definition of H ;, we have

H,(B) < A iff B< J(A).

Since A < J(A) iff H;(A) < A, we have 73y, = T7.

(3) Let 7(J(A)) = J(A) for A € LX. Since J(B) >
Hy(A)iff 7(J(B)) = J(B) > A from the definition
of H s, we have

Hi(Hs(A) = NB[IT(B)>H;(A)}
=MB|J(T(B)) =T(B) = A}

= H,(A).

(4) Let J*(A) € 7. Since J(J*(A)) = T*(A),

Hence J(A) € 77;ie. J*(A) € (17)«. Thus, 77 C
(77)+-

Let A € (77)«. Then A* = J(A*).
J(T* (A7) =

(T7)s C T7.

Since J(A) =
J*(A*) = A, then A € 77. Thus,
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(5) (H1) Since J(A*) < A*, Hy(A) = J(A*)* > A.
(H2) Ho(a® A) = (T ((a o A))*

= (J(a— A"))"

=(a = J(A"))"

—a®J(AY)

=a O Hs(A).

1o\ A = (T(\ A

i€l el
= (A 4D
i€l
— (\ Ty
=\ @y
el

= \/ HS(A’L)

iel

(H3)

Hence H; is an L-upper approximation operator such
that

Ho(B)(x) = (T (B)(2))" = \/ (T*(T;)(2)0B(y)).

yeX

Moreover, 7y, = (7)., from:

A=MH(A) iff A= J(A")* iff A" = J(A"%).

(6) Let 7(J(A)) = J(A) for A € LX. Then

Hs(Hs(A) =T (Hi(A) = (T (T (A7)

Hence 7y, = {Hs(A) =V, x (T7(T;)0A(y)) | A €
LYY,
(7) Let 7(J*(A)) = J*(A) for A € LX. Then

Hs(HI(A)) =T (Hs(A)) = (T(T"(A)"

= (T (A7) = Hi(A).

Hence m¢y, = {H;(4) = A,ex(Aly) = T(T})) |
Ae LXY.

Hs(Ms(A) = H(HI(HI(A)))

= HI(H(A)) = Hs(A).

By a similar method in (4), 73, = (731, ) -
(8) It is similarly proved as (5).
) If J(T(A) = J(A) for A € LX, then K ;(K%(A)) =
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K;(A)

Ki(K5(4) =K (T* (A7) = T(T(A"))

= J(A") = K;(A).

(10) If J(T*(A)) = T*(A) for A € LX, then K ; (K ; (A)) =

K5(4)

Ki(Ki(A) = TK;5(4) =TT (A
= J"(A) = K3(A).

Since K7 (K ;(A)) = K5(A),

Hence 7ic, = {K;(A) | A € LX} = (1%, ).
(11), (12), (13) and (14) are similarly proved as (5), (9), (10)

and (5), respectively.

"))

(15) ¥ J(T(A)) = J(A) for A € LX, then H;(H;(A)) =

HJ(A) Thus, ’CHJ (K;IJ (A)) = ICHJ (A)

K, (K, (A) = Ka, (H(A))
(

Hy(Hi(A)" = (Hs(A)" = Kn, (A).

Since J(A) = Aiff H;(A) = Aiff Ky, (A) = A*,

Ticw, = (77)+ With

Tkw, = {Kn, (A)(Y)

= \/ (T (Ty)(z) © A(z)) | A€ LX}.

zeX
(16) If H (H5(A)) = H5(A) for A € LX, then

Kr,(Kn, (A)) = Ki, (A)

Ke,(Kn,(A)) = Kn, (K5(A)) = H5(H;(A))

— M, (A) = K, (A),

(17), (18) and (19) are similarly proved as (14), (15) and (16),

respectively.

(20) (Kp,,K ) is a Galois connection;i.e,

A <Ku,(B) iff A< (H;(B))"

iff H;(B) < A* iff B< J(A*) =K;(A)

Moreover, since A* < K;(A)iff A < Ky, (A

(T/CHJ)*'
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*)’ ™Ky =

21) (M, Mp,) is a dual Galois connection;i.e,
M, (A) < B iff H;(A*) < B

iff A* < J(B) iff M;(B)=(J(B))" <A.
Since My, (A*) < A iff M (A) < A%, 7(m, =

(TMHJ )*

Let R € LX*X be an L-fuzzy relation. Define operators as

follows
Hr(A)(y) = V,ex(Al@) © R(z,y)),
Tr(A)(y) = Npex(R(z,y) = A2)),
Kr(A)(y) = Npex(Alz) = R(z,y))
Mr(A)(y) =V, ex(4"(@) © R(z,y)).

Example 2.2. Let R be a reflexive L-fuzzy relation. Define
Jr : L* — LX as follows:

Tr(A)(y) = N (R(z,y) — A(x)).

zeX

(1) AD Tr(A)(y) < R(y,y) = Aly) = A(y). Jr satisfies
the conditions (J1) and (J2) from:

Tr(a— A)(y) = Nex(B(@,y) = (@ = A)(2))
=a = N\yex(B(z,y) = Az)),

Tr(Nier 4) W) = Npex (B(@,y) = Nier Ai(@))
= /\ieF /\zeX( (z,y) = Ai(x)).

Hence Jg is an L-lower approximation operator.
(2) Define H,,,(B) = V{A| B < Jr(A)}. Since

B(y) < Jr(A)(y) iff By) < N\ (R(z,y) — A(2))

reX

iff \/ (B(y) © R(z,y)) < A=),

yeX

then

Hin(B)(@) = \/ (R(z,y) © B(y)) = Hp— (B)(=).

yeX

By Theorem 2.1(2), H j,, = H -1 is an L-upper approx-
imation operator such that (H ., Jr) is a residuated
connection;i.e.,

Hy.(A) < B iff A< Jr(B).

Moreover, 73, = T7-
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(3) If R is an L-fuzzy preorder, then R~! is an L-fuzzy
preorder. Since

Tr(Tr(A) (=) = /\ (B(y,2) = Tr(A)(y))

yeX

= AR > N (Rley) = A@)
yeX zeX

= N\ )\ (Ry,2) © R(z,y) — Ax)))
reX yeX

= N\ (\V (Ry.2) © R(z,y)) > Ax))
zeX yeX

= /\ (R(z,2) — A(x))
zeX

= jR(A)(Z)7

By Theorem 2.1(3), Xy, (H s, (A)) = H . (A). By The-
orem 2.1(3), Ty, = Tr with

{Hp1(A) =\ (R(=,2) © A(2)) | A€ L}

zeX
= T?-LJR =THp 1

770 = {Tr(4) = N\ (R(z,—) = A(x)) | A€ LV},

zeX

(4) Let R be a reflexive and Euclidean L-fuzzy relation.
Since R(z,z) ©® R(y,z) © A*(z) < R(z,y) © A*(x)
iff R(z,2) ® A*(z) < R(y, z) = R(z,y) < A*(x),

Tr(Tr(A))(2)

= /\ (R(y,2) = Tr(A)(y))
yeX

= N\ (R(y.2) = \/ R(z,y) © A" (2)))
yeX rzeX

> \/ R(z,z) © A*(x))).
zeX

Thus, Tr(JT5(A)) = Ti(A).

By Theorem 2.1(4), Jr(Jr(A)) = Jr(A) for A € LX.
Thus, TIr = (TJR)* with

TIn = {JE(A) = \/ (R(z,~) ® A7(2)) = Mr(4)

zeX
| AeLX}.

(5) Define Hs(A) = Jr(A*)*. By Theorem 2.1(5), Hs =

63| Yong Chan Kim

‘H r is an L-upper approximation operator such that

Ho(A) () = ( )\ Rlz,y) » A" (@)

reX
=\ (R(z,y) © A()).

reX

Moreover, 73, = T, = (Tw,, )+
(6) If R is an L-fuzzy preorder, then Jr(Jr(A)) = Tr(A)

for A € L. By Theorem 2.1(6), then H,(Hs(A)) =
Hs(A) for A € LX such that 74, = (7.7,)+ = (T3, )
with

i, = {Hs(4) = \/ (R(y. —) © Aly)) | A € L¥}.

(7) If R is areflexive and Euclidean L-fuzzy relation, then
Tr(TH(A)) = Ti(A) for A € LX. By Theorem 2.1(7),
Hs(HE(A)) = HE(A) such that

T, = (Th, )«
= {H:(4)
= A\ (A(y) = R*(y,-))
yeX
= Kr-(A) | Ae L¥}.

(8) Define Ky, (A) = Jr(A*). Then Ky, : LX — LX
with

Kin(A)@) = N (R(z,y) = A*(2)) = Kg- (y)
zeX
is an L-join meet approximation operator. Moreover,
TKsp = (T7m )

(9) Risan L-fuzzy preorder, then Jr(Jr(A)) = Jr(A) for
A e L*. By Theorem 2.1(9), K 7, (K% (A)) = K, (A)
for A € L* such that 7, = (7.7, )« with

Ky = K75 (A)
= \/ (R(z,—) © A(x))
zeX
=Hr(A) | Ae L¥).
(10) If R is a reflexive and Euclidean L-fuzzy relation, then
TIr(Tj(A) = Ji(A) for A € L¥. By Theorem
2.1(10), K 5, (K5, (A)) = K7, (A) such that

{Ksn(A) = Npex(A(z) = R*(z,—) | A€ L}

=Koy = (T’CJR)*'

(11) Define M, (A) = (Jr(A))*. Then M, : LX — LX
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with

Mue(A)(y) = \/ (A7(2) © R(z,y)) = Mr(A)(y)

c€X
is an L-join meet approximation operator. Moreover,
TMyp = Tr-
(12) If R is an L-fuzzy preorder, then Jr(Jr(A)) = Jr(4)
for A € L*. By Theorem 2.1(12), M, (M3, (A)) =
M., (A) for A € LX such that 7o, . = 7, with

™My, = M7, (4) =
= Jr(A) | A e LX)

Neex (B(z, =) = A(z))

(13) If R is a reflexive and Euclidean L-fuzzy relation, then
Tr(T5(A) = Ti(A) for A € LX. By Theorem
2.1(13), My, (M, (A)) = M3, (A) such that

;M = {IMuR(A) = V,ex (Alx) © R(z, —))
= HJR(A) | A€ LX} = (TMJR)*'

(14) Define K, (A) = (H,(A))*. Then

Ku,, : L* = L¥

with

K, (D) = N\ (Al@) = R (y,2))

zeX
= Kp—1-(4)(y)
is an L-join meet approximation operator. Moreover,
TKpn = TTn = THpy 1+
(15) If R is an L-fuzzy preorder, then Jr(Jr(A)) = Tr(A)
for A € L. By Theorem 2.1(15), Kz-1(K}_,(A4)) =
Kr-1(A) for A € L such that TR 1 = TTn = THp 1
with

TKp1e = KR (A (W) = Vyex (B(y, 2) © Az))
=Hr-1(A)(y) | A€ L*}

(16) Let R~! be a reflexive and Euclidean L-fuzzy relation.

Since

R (z,2) ©R M (y,2) < R™!(x,y)
iff R_l(y, z) < R_l(;v,z) — R_l(x,y)
iff R~ (y,2z) > R™'(z,2) © R~ (,y),

we have

(A(z) = R~ (z,y)) ® A(z) ® R~ (z, 2)
<R Yz,y) ® R (z,2) < R"(y, 2).

www.ijfis.org

Thus,
A(@)OR™ (2, 2) < (A(x) = R~ (2,y))
— R (z,y) © R~ (2,2) < R (y, 2).
Hence
]CR_l*(]CR_l* (A))(Z)
= A\ (Kr—-(A) () = R (y,2))

yeX

= A (A (@) = B (@) = B (y.2)
yeX zeX

<V (A@) © R (x,2)) = Kg-1(4)(2)
zeX

By (K1), Kg-1- (Kr-1+(A)) = K%_,. (A) such that

{Kr-1+(4) = /\ (A(z) = R*(—,2)) | Ae L*}

zeX
=TKp-1 — (TK:R—I)*'
(17) Define My, (A) = H,,(A"). Then
My, LY = L

is an L-meet join approximation operator as follows:

M, (D) =\ (Rly.2) © 47(2))

zeX
= Mp-1(4)(y)-

Moreover, Taty, = (T7m) -
(18) If Ris an L-fuzzy preorder, then Jr(Jr(A)) = Jr(A)
for A € LX. By Theorem 2.1(18),

MHJR (M?{JR (A)) = MHJR (A)

for A € L such that TMu, = (T7)« with
R

My = {Mz,JR (4)(y) =

(19) Let R~! be a reflexive and Euclidean L-fuzzy relation.

Since

(R(y,x) —A(x)) © R(z,y) © R(z, 7)
< R(y,z) = A(z)) © R(y, z) < A(x),

then (R(y,z) — A(z)) ® R(z,y) < R(z,z) — A(z).
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Thus,

MRfl (-A/IR*1 (A))(Z)
= \/ Mg-1(4)(y) © R(z,y))

yeX

=V (A (R(y,z) = A(z)) © R(z,y))
yeX zeX

< N (R(z,2) = A(z)) = Mp-1(A)(2).

By M1), Mp-1(Mp-1(A)) = M7}, (A) such that

{Mp-1(A) = V,ex(A*(2) © R(—,2)) | A€ L¥}
=TMg1 = ( )

(20) (ICHJR = Kp-1+,Kj, = Kpg+) is a Galois connec-
tionsie, A < Ky, (B) iff B < Kj,(A). Moreover,
Tip = (TKIHJR)*'

Q21 My, = MR,MHJR = Mg-1) is a dual Galois con-

nectionsi.e, My, . (A) < B iff M;,(B) < A. More-
OVer, Taq,, = (TMHJR )
3. Conclusions

In this paper, L-lower approximation operators induce L-upper
approximation operators by residuated connection. We study
relations lower (upper, join meet, meet join) approximation
operators, Galois (dual Galois, residuated, dual residuated)
connections and Alexandrov L-topologies. Moreover, we give
their examples as approximation operators induced by various
L-fuzzy relations.
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