DOI QR코드

DOI QR Code

Growth and Fatty Acid Composition of Juvenile Olive Flounder Paralichthys olivaceus Fed Diets Containing Different Levels and Ratios of Eicosapentaenoic Acid and Docosahexaenoic Acid

  • Choi, Jin (Department of Marine Bioscience and Technology, Gangneung-Wonju National University) ;
  • Aminikhoei, Zahra (Department of Marine Bioscience and Technology, Gangneung-Wonju National University) ;
  • Kim, Kyoung-Duck (Aqua feed Research Center, National Fisheries Research and Development Institute) ;
  • Lee, Sang-Min (Department of Marine Bioscience and Technology, Gangneung-Wonju National University)
  • Received : 2013.11.29
  • Accepted : 2013.01.27
  • Published : 2014.03.31

Abstract

This study was carried out to investigate the influences of dietary levels, ratios and sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the growth and fatty acid compositions of juvenile olive flounder Paralichthys olivaceus. Sixteen diets containing five levels of EPA (0.5%, 1.0%, 1.5%, 2.0%, and 4.0%), five levels of DHA (0.5%, 1.0%, 1.5%, 2.0% and 4.0%), three ratios of EPA/DHA (75/25, 50/50 and 25/75), two levels of squid liver oil (5% and 10%) and a control diet containing 5% soybean oil were hand-fed to triplicate groups of fish (average weight, $9.7{\pm}0.3g$) for 8 weeks. Survival, specific growth rate, feed efficiency and protein efficiency ratio of fish were not affected by dietary EPA and DHA levels or ratios. Also, the dietary treatment had no significant effect on the lipid and protein contents of muscle and whole body of fish. A corresponding increase in the EPA and DHA contents of fish occurred with increasing EPA and DHA levels in their diets. Our results suggest that juvenile olive flounder require a dietary EPA level of approximately 0.32% in the presence of 0.74% DHA for suitable survival and growth, and that EPA and DHA levels in fish muscle can increase to as much as 32% and 53%, respectively, of the total fatty acid content.

Keywords

References

  1. Bell MV and Dick JR. 2004. Changes in capacity to synthesise 22:6n-3 during early development in rainbow trout (Oncorhynchus mykiss). Aquaculture 235, 393-409. http://dx.doi.org/10.1016/j.aquaculture.2003.09.007.
  2. Bell MV, Henderson RJ and Sargent JR. 1985. Changes in the fatty acid composition of phospholipids from turbot (Scophthalmus maximus) in relation to dietary polyunsaturated fatty acid deficiencies. Comp Biochem Physiol B 81, 193-198. http://dx.doi.org/10.1016/0305-0491(85)90182-8.
  3. Caballero MJ, Obach A, Rosenlund G, Montero D, Gisvold M and Izquierdo MS. 2002. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture 214, 253-271. http://dx.doi.org/10.1016/S0044-8486(01)00852-3.
  4. Dickey-Collas M and Geffen AJ. 1992. Importance of the fatty acids $20:5{\omega}3$ and $22:6{\omega}3$ in the diet of plaice (Pleuronectes platessa) larvae. Mar Biol 113, 463-468. http://dx.doi.org/10.1007/BF00349172.
  5. Duncan DB. 1955. Multiple-range and multiple F tests. Biometrics 11, 1-42. http://dx.doi.org/10.2307/3001478.
  6. Estevez A, McEvoy LA, Bell JG and Sargent JR. 1999. Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids. Aquaculture 180, 321-343. http://dx.doi.org/10.1016/S0044-8486(99)00209-4.
  7. Farkas T, Csengeri I, Majoros F and Olah J. 1980. Metabolism of fatty acids in fish: III. Combined effect of environmental temperature and diet on formation and deposition of fatty acids in the carp, Cyprinus carpio Linnaeus 1758. Aquaculture 20, 29-40. http://dx.doi.org/10.1016/0044-8486(80)90059-9.
  8. Folch J, Lees M and Sloane-Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497-509.
  9. Furuita H, Takeuchi T, Watanabe T, Fujimoto H, Sekiya S and Imaizumi K. 1996. Requirements of larval yellowtail for eicosapentaenoic acid, docosahexaenoic acid and n-3 highly unsaturated fatty acids. Fish Sci 62, 372-379. https://doi.org/10.2331/fishsci.62.372
  10. Furuita H, Takeuchi T. and Uematsu K. 1998. Effect of eicosapentaenoic and docosahexaenoic acids on growth, survival and brain development of larval Japanese flounder (Paralichthys olivaceus). Aquaculture 161, 269-279. http://dx.doi.org/10.1016/S0044-8486(97)00275-5.
  11. Furuita H, Konishi K and Takeuchi T. 1999. Effect of different levels of eicosapentaenoic acid and docosahexaenoic acid in Artemia nauplii on growth, survival and salinity tolerance of larvae of the Japanese flounder, Paralichthys olivaceus. Aquaculture 170, 59-69. http://dx.doi.org/10.1016/S0044-8486(98)00386-X.
  12. Furuita H, Tanaka H, Yamamoto T, Suzuki N and Takeuchi T. 2002. Effects of high levels of n-3 HUFA in broodstock diet on egg quality and egg fatty acid composition of Japanese flounder, Paralichthys olivaceus. Aquaculture 210, 323-333. http://dx.doi.org/10.1016/S0044-8486(01)00855-9.
  13. Gatesoupe FJ, Leger C, Boudon M, Metailler R and Luquet P. 1977. Lipid feeding of turbot (Scophthalmus maximus L.): 2. Influence on growth of supplementation with methyl esters of linolenic acid and fatty acids of the w 9 series. Ann Hydrobiol 8, 247- 254.
  14. Hamre K and Harboe T. 2008. Critical levels of essential fatty acids for normal pigmentation in Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Aquaculture 277, 101-108. http://dx.doi.org/10.1016/j.aquaculture.2008.02.020.
  15. Harel M, Gavasso S, Leshin J, Gubernatis A and Place AR. 2001. The effect of tissue docosahexaenoic and arachidonic acids levels on hypersaline tolerance and leucocyte composition in striped bass (Morone saxatilis) larvae. Fish Physiol Biochem 24, 113-123. http://dx.doi.org/10.1023/A:1011924704459.
  16. Hong DD, Takahashi Y, Kushiro M and Ide T. 2003. Divergent effects of eicosapentaenoic and docosahexaenoic acid ethyl esters, and fish oil on hepatic fatty acid oxidation in the rat. Biochim Biophys Acta 1635, 29-36. http://dx.doi.org/10.1016/j.bbalip.2003.10.003.
  17. Ibeas C, Cejas JR, Fores R, Badia P, Gomez T, Lorenzo Henandez L. 1997. Influence of eicosapentaenoic to docosahexaenoicacid ratio (EPA/DHA) of dietary lipids on growth and fatty acid composition of gilthead seabream (Sparus aurata) juveniles. Aquaculture 150, 91-102. http://dx.doi.org/10.1016/S0044-8486(96)01473-1.
  18. Ibeas C, Rodriguez C, Badia P, Cejas JR, Santamaria FJ and Lorenzo A. 2000. Efficacy of dietary methyl esters of n-3 HUFA vs. triacylglycerols of n-3 HUFA by gilthead seabream (Sparus aurata L.) juveniles. Aquaculture 190, 273-287. http://dx.doi.org/10.1016/S0044-8486(00)00399-9.
  19. Iwata N, Kikuchi K, Honda H, Kiyono M and Kurokura H. 1994. Effects of temperature on the growth of Japanese flounder, Paralichthys olivaceus. Fish Sci 60, 527-531. https://doi.org/10.2331/suisan.60.527
  20. Izquierdo MS, Watanabe T, Takeuchi T, Arakawa T and Kitajima C. 1989. Requirement of larval red seabream Pagrus major for essential fatty acids. Nippon Suisan Gakkaishi 55, 859-867. http://dx.doi.org/10.2331/suisan.55.859.
  21. Izquierdo MS, Arakawa T, Takeuchi T, Haroun R and Watanabe T. 1992. Effect of n-3 HUFA levels in Artemia on growth of larval Japanese flounder (Paralichthys olivaceus). Aquaculture 105, 73-82. http://dx.doi.org/10.1016/0044-8486(92)90163-F.
  22. Kim DK, Kim KD, Seo JY and Lee SM. 2012. Effects of dietary lipid source and level on growth performance, blood parameters and flesh quality of sub-adult olive flounder (Paralichthys olivaceus). Asian Aust J Anim Sci 25, 869-879. http://dx.doi.org/10.5713/ajas.2011.11470.
  23. Kim KD and Lee SM. 2004. Requirement of dietary n-3 highly unsaturated fatty acids for juvenile flounder (Paralichthys olivaceus). Aquaculture 229, 315-323. http://dx.doi.org/10.1016/S0044-8486(03)00356-9.
  24. Lee SM. 2001. Review of the lipid and essential fatty acid requirements of rockfish (Sebastes schlegeli). Aquac Res 32, 8-17. http://dx.doi.org/10.1046/j.1355-557x.2001.00047.x.
  25. Lee SM, Cho SH and Kim KD. 2000. Effects of dietary protein and energy levels on growth and body composition of juvenile flounder Paralichthys olivaceus. J World Aquac Soc31, 306-315. http://dx.doi.org/10.1111/j.1749-7345.2000.tb00882.x.
  26. Lee SM, Lee JH and Kim KD. 2003. Effect of dietary essential fatty acids on growth, body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus). Aquaculture 225, 269-281. http://dx.doi.org/10.1016/S0044-8486(03)00295-3.
  27. Mourente G and Bell JG. 2006. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Comp Biochem Physiol B Biochem Mol Biol 145, 389-399. http://dx.doi.org/10.1016/j.cbpb.2006.08.012.
  28. Olsson GB, Olsen RL, Carlehog M and Ofstad R. 2003. Seasonal variations in chemical and sensory characteristics of farmed and wild Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 217, 191-205. http://dx.doi.org/10.1016/S0044-8486(02)00191-6.
  29. Ostbye TK, Kjaer MA, Rora AMB, Torstensen B and Ruyter B. 2011. High n-3 HUFA levels in the diet of Atlantic salmon affect muscle and mitochondrial membrane lipids and their susceptibility to oxidative stress. Aquac Nutr 17, 177-190. http://dx.doi.org/10.1111/j.1365-2095.2009.00721.x.
  30. Rodriguez C, Perez JA, Izquierdo MS, Mora J, Lorenzo A and Fernandez-Palacios H. 1994. Essential fatty acids requirements of larval gilthead sea bream (Sparus aurata L.). Aquac Res 25, 295-304. http://dx.doi.org/ 10.1111/j.1365-2109.1994.tb00692.x.
  31. Sargent J, Bell G, McEvoy L, Tocher D and Estevez A. 1999. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177, 191-199. http://dx.doi.org/10.1016/S0044-8486(99)00083-6.
  32. Sharma P, Kumar V, Sinha AK, Ranjan J, Kithsiri HMP and Venkateshwarlu G. 2010. Comparative fatty acid profiles of wild and farmed tropical freshwater fish rohu (Labeo rohita). Fish Physiol Biochem 36, 411-417. http://dx.doi.org/10.1007/s10695-009-9309-7.
  33. Stickney RR and Andrews JW. 1972. Effects of dietary lipids on growth, food conversion, lipid and fatty acid composition of channel catfish. J Nutr 102, 249-258. https://doi.org/10.1093/jn/102.2.249
  34. Takeuchi T and Watanabe T. 1979. Effect of excess amounts of essential fatty acids on growth of rainbow trout. Nippon Suisan Gakkaishi 45, 1517-1519. https://doi.org/10.2331/suisan.45.1517
  35. Takeuchi T, Toyota M and Watanabe T. 1992. Comparison of lipid and n-3 highly unsaturated fatty acid incorporations between Artemia enriched with various types of oil by direct method. Nippon Suisan Gakkaishi 58, 277-281. http://dx.doi.org/10.2331/suisan.58.277.
  36. Takeuchi T, Masuda R, Ishizaki Y, Watanabe T, Kanematsu M, Imaizumi K and Tsukamoto K. 1996. Determination of the requirement of larval striped jack for eicosapentaenoic acid and docosahexaenoic acid using enriched Artemia nauplii. Fish Sci 62, 760-765. https://doi.org/10.2331/fishsci.62.760
  37. Tocher DR. 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11, 107-184. http://dx.doi.org/10.1080/713610925.
  38. Tocher DR. 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res 41, 717-732. http://dx.doi.org/10.1111/j.1365-2109.2008.02150.x.
  39. Turchini GM, Francis DS and De Silva SS. 2007. A whole body, in vivo, fatty acid balance method to quantify PUFA metabolism (desaturation, elongation and beta-oxidation). Lipids 42, 1065-1071. http://dx.doi.org/10.1007/s11745-007-3105-x.
  40. Watanabe T and Kiron V. 1994. Prospects in larval fish dietetics. Aquaculture 124, 223-251. http://dx.doi.org/10.1016/0044-8486(94)90386-7.
  41. Watanabe T, Izquierdo MS, Takeuchi T, Satoh S and Kitajima C. 1989. Comparison between eicosapentaenoic and docosahexaenoic acids in terms of essential fatty acid efficacy in larval red sea bream. Nippon Suisan Gakkaishi 55, 1635-1640. https://doi.org/10.2331/suisan.55.1635
  42. Yoshimatsu T, Imoto H, Hayash M, Toda K and Yoshimura K. 1997. Preliminary results in improving essential fatty acids enrichment of rotifer cultured in high density. Hydrobiologia 358, 153-157. http://dx.doi.org/10.1007/978-94-017-2097-7_23.
  43. Zuo R, Ai Q, Mai K, Xu W, Wang J, Xu H, Liufu Z and Zhang Y. 2012. Effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth, nonspecific immunity, expression of some immune related genes and disease resistance of large yellow croaker (Larmichthys crocea) following natural infestation of parasites (Cryptocaryon irritans). Aquaculture 334, 101-109. http://dx.doi.org/10.1016/j.aquaculture.2011.12.045.