References
- E. J. Candes, X. Li, Y. Ma, and J. Wright, "Robust Principal Component Analysis?," Journal of ACM 58(1), 1-37.
- V. Chandrasekaran, S. Sanghavi, P.A. Parrilo and A.S. Willsky, "Rank-Sparsity Incoherence for Matrix Decomposition," SIAM J. Optim., 21(2), 572-596, 2011. https://doi.org/10.1137/090761793
- L.Breiman, "Random Forests,"Technical report, Department of Statistics, University of California, 2001.
- J.E. Jackson. "A User's Guide to Principal Components," New York: John Wiley and Sons, 1991.
- I.T.Jolliffe, "Principal Component Analysis," Springer-Verlag, 1986.
- P. Huber, "Robust Statistics," Wiley and Sons, 1981
- R. Gnanadesikan and J. Kettenring, "Robust estimates, residuals, and outlier detection with multiresponse data," Biometrics, 28:81-124, 1972. https://doi.org/10.2307/2528963
- Q. Ke and T. Kanade, "Robust l1-norm factorization in the presence of outliers and missing data,"In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 2005.
- M. Fischler and R. Bolles, "Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography," Communications of the ACM, 24:381-385, 1981. https://doi.org/10.1145/358669.358692
- F. De La Torre and M. Black, "A framework for robust subspace learning," International Journal on Computer Vision, 54:117-142, 2003. https://doi.org/10.1023/A:1023709501986
- H. Jiang, W. Deng, and Z. Shen, "Surveillance Video Processing Using Compressive Sensing," Inverse Problems and Imaging, Volume 6, No. 2, 201-214, 2012. https://doi.org/10.3934/ipi.2012.6.201
- Z. Zhang, A. Ganesh, X. Liang and Y. ma, "TILT: Transform Invariant Low-Rank Textures," International Journal of Computer Vision, 99(1), 1-24, 2012. https://doi.org/10.1007/s11263-012-0515-x
- A. Ganesh, K. Min, J. Wright and Y. Ma, "Principal Component Pursuit with reduced linear measurements,"Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on.
- E. J. Candes and B. Recht, "Exact Matrix Completion via Convex Optimization," Foundations of Computational Mathematics, 9(6), 717-772, 2009. https://doi.org/10.1007/s10208-009-9045-5
- E. J. Candes and Y. Plan, "Matrix Completion with Noise," Proceedings of IEEE, 98(6), 925-936, 2010. https://doi.org/10.1109/JPROC.2009.2035722
- R. H. Keshavan, A. Montanari and S. Oh, "Matrix Completion From a Few Entries," IEEE Transactions on Information Theory, 56(6), 2980-2998, 2010. https://doi.org/10.1109/TIT.2010.2046205
- M. Wootters, Y. Plan, M.A. Davenport and E. van den Berg, "Lower bounds for quantized matrix completion," Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on.
- A.Waters, A. Sankaranarayanan and R. Baraniuk, "SpaRCS: Recovering Low-Rank and Sparse Matrices from Compressive Measurements," Proceedings of the Neural Infromation Processing Systems (NIPS), 2011.
- M. Grant and S. Boyd, "CVX: Matlab software for disciplined convex programming." http://stanford. edu/-boyd/cvx, 2009
- J. Cai, E. J. Candes and Z. Shen, "A Singular Value Thresholding Algorithm for Matrix Completion, SIAM, J. Optim., 20(4), 1956-1982, 2010. https://doi.org/10.1137/080738970
- Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma, "Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix," In Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2009.
- A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems,"SIAM Journal on Imaging Sciences, 2(1):183-202, Mar 2009. https://doi.org/10.1137/080716542
- X. Yuan and J. Yang, "Sparse and low-rank matrix decomposition via alternating direction method," Pacific J. Optim., vol.9, no.1, pp 167-180, 2013.
- 이형일, 이혁, 이정우, "부공간에의 사영에 기반한 RPCA 기법의 온라인 업데이트 기법", 한국통신학회 추계종합학술발표회, 2014