References
- Adhikari, S. and Wagner, N. (2004), "Direct time-domain integration method for exponentially damped linear systems", J. Comput. Struct., 82(29-30), 2453-2461. https://doi.org/10.1016/j.compstruc.2004.08.004
- Adhikari, S. (2000), "Damping models for structural vibration", Ph.D. Thesis, University of Cambridge.
- Basu, A.K. and Sommerville, W. (1996), "Derivation of formulae for the design of rectangular composite columns", Proceeding of Civil Engineering Department, London.
- Chopra, A.K. (1995), Dynamics of structures: theory and application to earthquake engineering, Prentice- Hall, Upper-Saddle River, NJ.
- Clough, R.W. and Penzien, J. (1993), Structural dynamics, New York, McGraw Hill.
- Computers and Structures Inc. SAP (2000), Integrated Structural Analysis and Design Software, Berkeley, CA. (http://www.csiberkeley.com/sap2000)
- Cortes, F., Mateos, M. and Elejabarrieta, M.J. (2009), "A direct integration formulation for exponentially damped structural systems", J. Comput. Struct., 87(5-6), 391-394. https://doi.org/10.1016/j.compstruc.2008.11.003
- Duncan, P.E. and Taylor, R.E. (1979), "A note on the dynamic analysis of non-proportionally damped systems", J. Earthq. Eng. Struct. Dyn., 7(1), 99-105. https://doi.org/10.1002/eqe.4290070109
- Fang, J.Q., Li, Q.S., Jeary, A.P. and Liu, D.K. (1999), "Damping of tall buildings: its evaluation and probabilistic characteristics", J. Struct. Des. Tall Spec. Build., 8(2), 145-153. https://doi.org/10.1002/(SICI)1099-1794(199906)8:2<145::AID-TAL127>3.0.CO;2-1
- Foss, K.A. (1958), "Co-ordinates which uncouple the equations of motion of damped linear dynamic systems", Tran. ASME, J. Appl. Mech., 25, 361-364.
- Hajjar, J.F. (2002), "Composite steel and concrete structural systems for seismic engineering", J. Constr. Steel Res., 58(5-8), 703-723. https://doi.org/10.1016/S0143-974X(01)00093-1
- Huang, B.C., Leung, A.Y.T., Lam, K.L. and Cheung, V.K. (1996), "Analytical determination of equivalent modal damping ratios of a composite tower in wind-induced vibrations", J. Comput. Struct., 59(2), 311- 316. https://doi.org/10.1016/0045-7949(95)00258-8
- Johnson, R.P. (2004), Composite Structures of Steel and Concrete, Blackwell Scientific Publications.
- Kim, M.C., Jung, H.J. and Lee, I.W. (1999), "Solution of eigenvalue problem for non-classically damped system with multiple frequencies", J. Sound Vib., 219(2), 196-111.
- Lee, S.H., Min, K.W., Hwang, J.S. and Kim, J. (2004), "Evaluation of equivalent damping ratio of a structure with added dampers", J. Eng. Struct., 26(3), 335-46. https://doi.org/10.1016/j.engstruct.2003.09.014
- Li, Q.S., Yang, K., Zhang, N., Wong, C.K. and Jeary, A.P. (2002), "Field measurements of amplitudedependent damping in a 79-storey tall building and its effects on the structural dynamic responses", J. Struct. Des. Tall Spec. Build., 11(2), 129-153. https://doi.org/10.1002/tal.195
- Liu, S.W., Liu, Y.P. and Cha, S.L. (2012), "Advanced analysis of hybrid steel and concrete frames Part 1: Cross-section analysis technique and second-order analysis", J. Constr. Steel Res., 70, 326-336. https://doi.org/10.1016/j.jcsr.2011.09.003
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), The Open System for Earthquake Engineering Simulation (OpenSEES) User Command-Language Manual, Pacific Earthquake Eng. Research Center, Univ. Calif., Berkeley, CA. (http://opensees.berkeley.edu)
- Newland, D.E. (1989), Mechanical Vibration Analysis and Computation, Longman, Harlow and John Wiley, New York.
- Ozguven, H.N. (2002), "Twenty Years of Computational Methods for Harmonic Response Analysis of Non- Proportionally Damped Systems", Proceedings of the 20th International Modal Analysis Conference, Los Angeles.
- Papageorgiou, A. and Gantes, C. (2005), "Decoupling criteria for dynamic response of primary/secondary structural systems", Proceedings of 4th European workshop on the seismic behavior of irregular and complex structures, Thessaloniki, Greece.
- Papageorgiou, A. and Gantes, C. (2010), "Equivalent modal damping ratios for concrete/steel mixed structures", J. Comput. Struct., 88(19-20), 1124-1136. https://doi.org/10.1016/j.compstruc.2010.06.014
- Papageorgiou, A. and Gantes, C. (2010), "Decoupling criteria for inelastic irregular primary/secondary structural systems subject to seismic excitation", J. Eng. Mech., 136(10), 1234-1247. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000166
- Papageorgiou, A. and Gantes, C. (2011), "Equivalent uniform damping ratios for linear irregularly damped concrete/steel mixed structures", J. Soil Dyn. Earthq. Eng., 31(3), 418-430. https://doi.org/10.1016/j.soildyn.2010.09.010
- Papagiannopoulos, G.A. and Beskos, D.E. (2006), "On a modal damping identification model of building structures", Arch. Appl. Mech., 76(7-8), 443-463. https://doi.org/10.1007/s00419-006-0046-4
- Papagiannopoulos, G.A. and Beskos, D.E. (2009), "On a modal damping identification model for nonclassically damped linear building structures subjected to earthquakes", J. Soil Dyn. Earthq. Eng., 29(3), 583-589. https://doi.org/10.1016/j.soildyn.2008.10.005
- Park, I.W., Kim, J.S. and Ma, F. (1992), "On modal coupling in non-classically damped linear systems", Mech. Res. Commun., 19(5), 407-413. https://doi.org/10.1016/0093-6413(92)90019-7
- Shahruz, S.M. (1990), "Approximate decoupling of the equations of motion of damped linear systems", J. Sound Vib., 136(1), 51-64. https://doi.org/10.1016/0022-460X(90)90937-U
- Shahruz, S.M. and Langari, G. (1992), "Closeness of the solutions of approximately decoupled damped linear systems to their exact solutions", ASME J. Dyn. Syst., Measur. Control, 114(3), 369-374. https://doi.org/10.1115/1.2897357
- Taranath, B.S. (2011), Structural Analysis and Design of Tall Buildings: Steel and Composite Construction, DeSimone Consulting Engineers, Nevada.
- Viest, I.M., Colaco, J.P., Furlong, R.W., Griffs, L.G., Leon, R.T. and Wyllie, L.A. (1997), Composite Construction Design for Buildings, ASCE/McGraw-Hill.
- Villaverde, R. (2008), "A complex modal superposition method for the seismic analysis of structures with supplemental dampers", Proceedings of the 14th World Conference on Earthquake Engineering, 14WCEE, Beijing, China.
- Virdi, K.S. and Dowling, P.J. (1973), "The ultimate strength of composite columns in biaxial bending", ICE Proceedings, 55(10), 251-272. https://doi.org/10.1680/iicep.1973.4958
- Xu, J. (2004), "A synthesis formulation of explicit damping matrix for non-classically damped systems", Nucl. Eng. Des., 227(2), 125-132. https://doi.org/10.1016/j.nucengdes.2003.08.005
- Zona, A., Barbato, M. and Conte, J.P. (2008), "Nonlinear seismic response analysis of steel-concrete composite frames", J. Struct. Eng., 134(6), 986-997. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:6(986)
Cited by
- Response modification factor of mixed structures vol.19, pp.6, 2015, https://doi.org/10.12989/scs.2015.19.6.1449
- Stiffness and Damping Identification for Asymmetric Building Frame With In-plane Flexible Floors vol.5, pp.None, 2014, https://doi.org/10.3389/fbuil.2019.00103
- Quantifying response variability of steel moment frames due to seismic uncertainties vol.20, pp.4, 2019, https://doi.org/10.1007/s42107-019-00115-3
- Performance Assessment of Steel Moment Connections Retrofitted with Various Reduced Section Patterns vol.29, pp.4, 2014, https://doi.org/10.2478/ceer-2019-0041
- A Design Method for Viscous Dampers Connecting Adjacent Structures vol.6, pp.None, 2014, https://doi.org/10.3389/fbuil.2020.00025
- Hysteretic-Viscous Hybrid Damper System for Long-Period Pulse-Type Earthquake Ground Motions of Large Amplitude vol.6, pp.None, 2020, https://doi.org/10.3389/fbuil.2020.00062
- Generalized complex mode superposition approach for non-classically damped systems vol.73, pp.3, 2014, https://doi.org/10.12989/sem.2020.73.3.271
- Seismic Behavior of a Class of Mixed Reinforced Concrete-Steel Buildings Subjected to Near-Fault Motions vol.6, pp.12, 2021, https://doi.org/10.3390/infrastructures6120172