References
- Abdalla, K.M. and Chen, W.F. (1995), "Expanded database of semi-rigid steel connections", Comput. Struct., 56(4), 553-564. https://doi.org/10.1016/0045-7949(94)00558-K
- AISC (2010), Specification for structural steel buildings, American Institute of Steel Construction, ANSI/AISC 360-10, Chicago.
- AISC-LRFD (2001), Manual of steel construction-Load and Resistance Factor Design, American Institute of Steel Construction, Chicago.
- Alsalloum, Y.A. and Almusallam, T.H. (1995), "Optimality and safety of rigidly-jointed and flexibly-jointed steel frames", J. Constr. Steel Res., 35(2), 189-215. https://doi.org/10.1016/0143-974X(94)00043-H
- BS5950 (1990), Structural use of steelworks in buildings, British Standards Institution, London.
- Chen, W.F., Goto, Y. and Liew, J.Y.R. (1996), Stability design of semi-rigid frames, John Wiley & Sons Inc, New York.
- Cheng, Y.M., Li, L., Lansivaara, T., Chi, S.C. and Sun, Y.J. (2008), "An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis", Eng. Optim., 40(2), 95-115. https://doi.org/10.1080/03052150701618153
- Degertekin, S.O. (2008) "Harmony search algorithm for optimum design of steel frame structures: a comparative study with other optimization methods", Struct. Eng. Mech., 29(4), 391-410. https://doi.org/10.12989/sem.2008.29.4.391
- Degertekin, S.O. and Hayalioglu, M.S. (2010), "Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases", Struct. Multidisc. Optim., 42(5),755-768. https://doi.org/10.1007/s00158-010-0533-7
- Dogan, E. and Saka, M.P. (2012), "Optimum design of unbraced steel frames to LRFD-AISC using particle swarm optimization", Adv. Eng. Softw., 46(1), 27-34. https://doi.org/10.1016/j.advengsoft.2011.05.008
- Eurocode3 (1992), Design of Steel Structures Part I: General rules and rules for buildings, Committee European de Normalisation (CEN), Brussels.
- Faella, C., Piluso, V. and Rizzano, G. (2000), Structural steel semi-rigid connections, CRC press, Boca Raton.
- Fourie, P.C. and Groenwold, A.A. (2002), "The particle swarm optimization algorithm in size and shape optimization", Struct. Multidisc. Optim., 23, 259-267. https://doi.org/10.1007/s00158-002-0188-0
- Frye, M.J. and Morris, G.A. (1975), "Analysis of flexibly connected steel frames", Can. J. Civ. Eng., 2(3), 280-291. https://doi.org/10.1139/l75-026
- Geem, Z.W. (2007), "Optimal scheduling of multiple dam system using harmony search algorithm", Lect. Notes Comput. Sci., 4507, 316-323. https://doi.org/10.1007/978-3-540-73007-1_39
- Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76(2), 60-68. https://doi.org/10.1177/003754970107600201
- Gorgun, H. (2013), "Geometrically nonlinear analysis of plane frames composed of flexibly connected members", Struct. Eng. Mech., 45(3), 277-309. https://doi.org/10.12989/sem.2013.45.3.277
- Hayalioglu, M.S. and Degertekin, S.O. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83(21-22), 1849-1863. https://doi.org/10.1016/j.compstruc.2005.02.009
- Ihaddoudene, A.N.T., Saidani, M. and Chemrouk, M. (2009), "Mechanical model for the analysis of steel frames with semi rigid joints", J. Constr. Steel Res., 65(3), 631-640. https://doi.org/10.1016/j.jcsr.2008.08.010
- Kameshki, E.S. and Saka, M.P. (2003), "Genetic algorithm based optimum design of nonlinear planar steel frames with various semi-rigid connections", J. Constr. Steel Res., 59(1), 109-134. https://doi.org/10.1016/S0143-974X(02)00021-4
- Kaveh, A. and Moez, H. (2008), "Minimal cycle bases for analysis of frames with semi-rigid joints", Comput. Struct., 86(6), 503-510. https://doi.org/10.1016/j.compstruc.2007.05.024
- Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Struct. Eng. Mech., 42(6), 1301-1328.
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, vol.IV, 1942-1948.
- Kishi, N., Chen, W.F. and Goto, Y. (1997), "Effective length factor of columns in semi-rigid and unbraced frames", J. Struct. Eng. ASCE, 123(3), 313-320. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:3(313)
- Lee, K.S. and Geem, Z.W. (2005), "A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice", Comput. Method. Appl. Mech. Eng., 194(36-38), 3902-3933. https://doi.org/10.1016/j.cma.2004.09.007
- Li, L.J., Huang, Z.B. and Liu, F. (2009), "A heuristic particle swarm optimization method for truss structures with discrete variables", Comput. Struct., 87(7-8), 435-443. https://doi.org/10.1016/j.compstruc.2009.01.004
- Li, L.J., Huang, Z.B., Liu, F. and Wu, Q.H. (2007), "A heuristic particle swarm optimizer for optimization of pin connected structures", Comput. Struct., 85(7-8), 340-349. https://doi.org/10.1016/j.compstruc.2006.11.020
- Luh, G.C. and Lin, C.Y. (2011), "Optimal design of truss-structures using particle swarm optimization", Comput. Struct., 89(23-24), 2221-2232. https://doi.org/10.1016/j.compstruc.2011.08.013
- Mun, S. and Geem, Z.W. (2009), "Determination of viscoelastic and damage properties of hot mix asphalt concrete using a harmony search algorithm", Mech. Mater., 41(3), 339-353. https://doi.org/10.1016/j.mechmat.2008.11.008
- Perez, R.E. and Behdinan K. (2007), "Particle swarm approach for structural design optimization", Comput. Struct., 85(19-20), 1579-1588. https://doi.org/10.1016/j.compstruc.2006.10.013
- Rafiee, A., Talatahari, S. and Hadidi, A. (2013), "Optimum design of steel frames with semi-rigid connections using big bang-big crunch method", Steel Compos. Struct., 14(5), 431-451. https://doi.org/10.12989/scs.2013.14.5.431
- Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng., ASCE, 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
- Saka, M.P. (2009), "Optimum design of steel sway frames to BS5950 using harmony search algorithm", J. Constr. Steel Res., 65, 36-43. https://doi.org/10.1016/j.jcsr.2008.02.005
- Saka, M.P. and Erdal, F. (2009), "Harmony search based algorithm for the optimum design of grillage systems to LRFD-AISC", Struct. Multidisc. Optim., 38(1), 25-41. https://doi.org/10.1007/s00158-008-0263-2
- Schutte, J.F. and Groenwold, A.A. (2003), "Sizing design of truss structures using particle swarms", Struct. Multidisc. Optim., 25(4), 261-269. https://doi.org/10.1007/s00158-003-0316-5
- Shi, Y. and Eberhart, R. (1998), "A modified particle swarm optimizer", Proc. IEEE Int. Conf. Evolutionary Computation, Piscataway, IEEE Press, 69-73.
- Simoes, L.M.C. (1996), "Optimization of frames with semi-rigid connections", Comput. Struct., 60(4), 531- 539. https://doi.org/10.1016/0045-7949(95)00427-0
- Valipour, H.R. and Bradford, M.A. (2013), "Nonlinear P-Δ analysis of steel frames with semi-rigid connections", Steel Compos. Struct., 14(1), 1-20. https://doi.org/10.12989/scs.2013.14.1.001
- Xu, L. and Grierson, D.E. (1993), "Computer automated design of semi-rigid steel frameworks", J. Struct. Eng., ASCE, 119(6), 1740-1760. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1740)
Cited by
- A comparative study on optimum design of multi-element truss structures vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.521
- The stability of semi-rigid skeletal structures accounting for shear deformations vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1065
- A new hybrid algorithm for simultaneous size and semi-rigid connection type optimization of steel frames vol.15, pp.1, 2015, https://doi.org/10.1007/s13296-015-3006-4
- Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.1035
- Optimum weight design of steel space frames with semi-rigid connections using harmony search and genetic algorithms 2016, https://doi.org/10.1007/s00521-016-2634-8
- Optimum design of steel space frames including soil-structure interaction vol.54, pp.1, 2016, https://doi.org/10.1007/s00158-016-1401-x
- Optimum design of steel space frames under earthquake effect using harmony search vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.597
- Optimum design of steel frames with semi-rigid connections and composite beams vol.55, pp.2, 2015, https://doi.org/10.12989/sem.2015.55.2.299
- An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions vol.55, pp.5, 2015, https://doi.org/10.12989/sem.2015.55.5.979
- Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations vol.11, pp.4, 2016, https://doi.org/10.12989/eas.2016.11.4.701
- On the progressive collapse resistant optimal seismic design of steel frames vol.60, pp.5, 2016, https://doi.org/10.12989/sem.2016.60.5.761
- Optimum design of steel space frames with composite beams using genetic algorithm vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.503
- Optimum design of steel bridges including corrosion effect using TLBO vol.63, pp.5, 2014, https://doi.org/10.12989/sem.2017.63.5.607
- A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms vol.66, pp.2, 2014, https://doi.org/10.12989/sem.2018.66.2.173
- Probability-based structural response of steel beams and frames with uncertain semi-rigid connections vol.67, pp.5, 2014, https://doi.org/10.12989/sem.2018.67.5.439
- Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms vol.70, pp.2, 2014, https://doi.org/10.12989/sem.2019.70.2.221
- A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.153
- Optimum design of stiffened plates for static or dynamic loadings using different ribs vol.74, pp.2, 2014, https://doi.org/10.12989/sem.2020.74.2.255
- Minimum cost strengthening of existing masonry arch railway bridges vol.75, pp.2, 2014, https://doi.org/10.12989/sem.2020.75.2.271
- Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795