DOI QR코드

DOI QR Code

Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames

  • Hadidi, Ali (Department of Civil Engineering, University of Tabriz) ;
  • Rafiee, Amin (Department of Civil Engineering, University of Tabriz)
  • Received : 2013.07.20
  • Accepted : 2014.03.05
  • Published : 2014.05.10

Abstract

This paper proposes a Particle Swarm Optimization (PSO) algorithm, which is improved by making use of the Harmony Search (HS) approach and called HS-PSO algorithm. A computer code is developed for optimal sizing design of non-linear steel frames with various semi-rigid and rigid beam-to-column connections based on the HS-PSO algorithm. The developed code selects suitable sections for beams and columns, from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange W-shapes, such that the minimum total cost, which comprises total member plus connection costs, is obtained. Stress and displacement constraints of AISC-LRFD code together with the size constraints are imposed on the frame in the optimal design procedure. The nonlinear moment-rotation behavior of connections is modeled using the Frye-Morris polynomial model. Moreover, the P-${\Delta}$ effects of beam-column members are taken into account in the non-linear structural analysis. Three benchmark design examples with several types of connections are presented and the results are compared with those of standard PSO and of other researches as well. The comparison shows that the proposed HS-PSO algorithm performs better both than the PSO and the Big Bang-Big Crunch (BB-BC) methods.

Keywords

References

  1. Abdalla, K.M. and Chen, W.F. (1995), "Expanded database of semi-rigid steel connections", Comput. Struct., 56(4), 553-564. https://doi.org/10.1016/0045-7949(94)00558-K
  2. AISC (2010), Specification for structural steel buildings, American Institute of Steel Construction, ANSI/AISC 360-10, Chicago.
  3. AISC-LRFD (2001), Manual of steel construction-Load and Resistance Factor Design, American Institute of Steel Construction, Chicago.
  4. Alsalloum, Y.A. and Almusallam, T.H. (1995), "Optimality and safety of rigidly-jointed and flexibly-jointed steel frames", J. Constr. Steel Res., 35(2), 189-215. https://doi.org/10.1016/0143-974X(94)00043-H
  5. BS5950 (1990), Structural use of steelworks in buildings, British Standards Institution, London.
  6. Chen, W.F., Goto, Y. and Liew, J.Y.R. (1996), Stability design of semi-rigid frames, John Wiley & Sons Inc, New York.
  7. Cheng, Y.M., Li, L., Lansivaara, T., Chi, S.C. and Sun, Y.J. (2008), "An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis", Eng. Optim., 40(2), 95-115. https://doi.org/10.1080/03052150701618153
  8. Degertekin, S.O. (2008) "Harmony search algorithm for optimum design of steel frame structures: a comparative study with other optimization methods", Struct. Eng. Mech., 29(4), 391-410. https://doi.org/10.12989/sem.2008.29.4.391
  9. Degertekin, S.O. and Hayalioglu, M.S. (2010), "Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases", Struct. Multidisc. Optim., 42(5),755-768. https://doi.org/10.1007/s00158-010-0533-7
  10. Dogan, E. and Saka, M.P. (2012), "Optimum design of unbraced steel frames to LRFD-AISC using particle swarm optimization", Adv. Eng. Softw., 46(1), 27-34. https://doi.org/10.1016/j.advengsoft.2011.05.008
  11. Eurocode3 (1992), Design of Steel Structures Part I: General rules and rules for buildings, Committee European de Normalisation (CEN), Brussels.
  12. Faella, C., Piluso, V. and Rizzano, G. (2000), Structural steel semi-rigid connections, CRC press, Boca Raton.
  13. Fourie, P.C. and Groenwold, A.A. (2002), "The particle swarm optimization algorithm in size and shape optimization", Struct. Multidisc. Optim., 23, 259-267. https://doi.org/10.1007/s00158-002-0188-0
  14. Frye, M.J. and Morris, G.A. (1975), "Analysis of flexibly connected steel frames", Can. J. Civ. Eng., 2(3), 280-291. https://doi.org/10.1139/l75-026
  15. Geem, Z.W. (2007), "Optimal scheduling of multiple dam system using harmony search algorithm", Lect. Notes Comput. Sci., 4507, 316-323. https://doi.org/10.1007/978-3-540-73007-1_39
  16. Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76(2), 60-68. https://doi.org/10.1177/003754970107600201
  17. Gorgun, H. (2013), "Geometrically nonlinear analysis of plane frames composed of flexibly connected members", Struct. Eng. Mech., 45(3), 277-309. https://doi.org/10.12989/sem.2013.45.3.277
  18. Hayalioglu, M.S. and Degertekin, S.O. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83(21-22), 1849-1863. https://doi.org/10.1016/j.compstruc.2005.02.009
  19. Ihaddoudene, A.N.T., Saidani, M. and Chemrouk, M. (2009), "Mechanical model for the analysis of steel frames with semi rigid joints", J. Constr. Steel Res., 65(3), 631-640. https://doi.org/10.1016/j.jcsr.2008.08.010
  20. Kameshki, E.S. and Saka, M.P. (2003), "Genetic algorithm based optimum design of nonlinear planar steel frames with various semi-rigid connections", J. Constr. Steel Res., 59(1), 109-134. https://doi.org/10.1016/S0143-974X(02)00021-4
  21. Kaveh, A. and Moez, H. (2008), "Minimal cycle bases for analysis of frames with semi-rigid joints", Comput. Struct., 86(6), 503-510. https://doi.org/10.1016/j.compstruc.2007.05.024
  22. Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Struct. Eng. Mech., 42(6), 1301-1328.
  23. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, vol.IV, 1942-1948.
  24. Kishi, N., Chen, W.F. and Goto, Y. (1997), "Effective length factor of columns in semi-rigid and unbraced frames", J. Struct. Eng. ASCE, 123(3), 313-320. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:3(313)
  25. Lee, K.S. and Geem, Z.W. (2005), "A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice", Comput. Method. Appl. Mech. Eng., 194(36-38), 3902-3933. https://doi.org/10.1016/j.cma.2004.09.007
  26. Li, L.J., Huang, Z.B. and Liu, F. (2009), "A heuristic particle swarm optimization method for truss structures with discrete variables", Comput. Struct., 87(7-8), 435-443. https://doi.org/10.1016/j.compstruc.2009.01.004
  27. Li, L.J., Huang, Z.B., Liu, F. and Wu, Q.H. (2007), "A heuristic particle swarm optimizer for optimization of pin connected structures", Comput. Struct., 85(7-8), 340-349. https://doi.org/10.1016/j.compstruc.2006.11.020
  28. Luh, G.C. and Lin, C.Y. (2011), "Optimal design of truss-structures using particle swarm optimization", Comput. Struct., 89(23-24), 2221-2232. https://doi.org/10.1016/j.compstruc.2011.08.013
  29. Mun, S. and Geem, Z.W. (2009), "Determination of viscoelastic and damage properties of hot mix asphalt concrete using a harmony search algorithm", Mech. Mater., 41(3), 339-353. https://doi.org/10.1016/j.mechmat.2008.11.008
  30. Perez, R.E. and Behdinan K. (2007), "Particle swarm approach for structural design optimization", Comput. Struct., 85(19-20), 1579-1588. https://doi.org/10.1016/j.compstruc.2006.10.013
  31. Rafiee, A., Talatahari, S. and Hadidi, A. (2013), "Optimum design of steel frames with semi-rigid connections using big bang-big crunch method", Steel Compos. Struct., 14(5), 431-451. https://doi.org/10.12989/scs.2013.14.5.431
  32. Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng., ASCE, 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
  33. Saka, M.P. (2009), "Optimum design of steel sway frames to BS5950 using harmony search algorithm", J. Constr. Steel Res., 65, 36-43. https://doi.org/10.1016/j.jcsr.2008.02.005
  34. Saka, M.P. and Erdal, F. (2009), "Harmony search based algorithm for the optimum design of grillage systems to LRFD-AISC", Struct. Multidisc. Optim., 38(1), 25-41. https://doi.org/10.1007/s00158-008-0263-2
  35. Schutte, J.F. and Groenwold, A.A. (2003), "Sizing design of truss structures using particle swarms", Struct. Multidisc. Optim., 25(4), 261-269. https://doi.org/10.1007/s00158-003-0316-5
  36. Shi, Y. and Eberhart, R. (1998), "A modified particle swarm optimizer", Proc. IEEE Int. Conf. Evolutionary Computation, Piscataway, IEEE Press, 69-73.
  37. Simoes, L.M.C. (1996), "Optimization of frames with semi-rigid connections", Comput. Struct., 60(4), 531- 539. https://doi.org/10.1016/0045-7949(95)00427-0
  38. Valipour, H.R. and Bradford, M.A. (2013), "Nonlinear P-Δ analysis of steel frames with semi-rigid connections", Steel Compos. Struct., 14(1), 1-20. https://doi.org/10.12989/scs.2013.14.1.001
  39. Xu, L. and Grierson, D.E. (1993), "Computer automated design of semi-rigid steel frameworks", J. Struct. Eng., ASCE, 119(6), 1740-1760. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1740)

Cited by

  1. A comparative study on optimum design of multi-element truss structures vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.521
  2. The stability of semi-rigid skeletal structures accounting for shear deformations vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1065
  3. A new hybrid algorithm for simultaneous size and semi-rigid connection type optimization of steel frames vol.15, pp.1, 2015, https://doi.org/10.1007/s13296-015-3006-4
  4. Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.1035
  5. Optimum weight design of steel space frames with semi-rigid connections using harmony search and genetic algorithms 2016, https://doi.org/10.1007/s00521-016-2634-8
  6. Optimum design of steel space frames including soil-structure interaction vol.54, pp.1, 2016, https://doi.org/10.1007/s00158-016-1401-x
  7. Optimum design of steel space frames under earthquake effect using harmony search vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.597
  8. Optimum design of steel frames with semi-rigid connections and composite beams vol.55, pp.2, 2015, https://doi.org/10.12989/sem.2015.55.2.299
  9. An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions vol.55, pp.5, 2015, https://doi.org/10.12989/sem.2015.55.5.979
  10. Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations vol.11, pp.4, 2016, https://doi.org/10.12989/eas.2016.11.4.701
  11. On the progressive collapse resistant optimal seismic design of steel frames vol.60, pp.5, 2016, https://doi.org/10.12989/sem.2016.60.5.761
  12. Optimum design of steel space frames with composite beams using genetic algorithm vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.503
  13. Optimum design of steel bridges including corrosion effect using TLBO vol.63, pp.5, 2014, https://doi.org/10.12989/sem.2017.63.5.607
  14. A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms vol.66, pp.2, 2014, https://doi.org/10.12989/sem.2018.66.2.173
  15. Probability-based structural response of steel beams and frames with uncertain semi-rigid connections vol.67, pp.5, 2014, https://doi.org/10.12989/sem.2018.67.5.439
  16. Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms vol.70, pp.2, 2014, https://doi.org/10.12989/sem.2019.70.2.221
  17. A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.153
  18. Optimum design of stiffened plates for static or dynamic loadings using different ribs vol.74, pp.2, 2014, https://doi.org/10.12989/sem.2020.74.2.255
  19. Minimum cost strengthening of existing masonry arch railway bridges vol.75, pp.2, 2014, https://doi.org/10.12989/sem.2020.75.2.271
  20. Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795