DOI QR코드

DOI QR Code

Multi-objective optimization of foundation using global-local gravitational search algorithm

  • Khajehzadeh, Mohammad (Department of Civil Engineering, Anar Branch, Islamic Azad University) ;
  • Taha, Mohd Raihan (Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia) ;
  • Eslami, Mahdiyeh (Department of Electrical Engineering, Science and Research Branch, Islamic Azad University)
  • 투고 : 2013.01.16
  • 심사 : 2014.03.02
  • 발행 : 2014.05.10

초록

This paper introduces a novel optimization technique based on gravitational search algorithm (GSA) for numerical optimization and multi-objective optimization of foundation. In the proposed method, a chaotic time varying system is applied into the position updating equation to increase the global exploration ability and accurate local exploitation of the original algorithm. The new algorithm called global-local GSA (GLGSA) is applied for optimization of some well-known mathematical benchmark functions as well as two design examples of spread foundation. In the foundation optimization, two objective functions include total cost and $CO_2$ emissions of the foundation subjected to geotechnical and structural requirements are considered. From environmental point of view, minimization of embedded $CO_2$ emissions that quantifies the total amount of carbon dioxide emissions resulting from the use of materials seems necessary to include in the design criteria. The experimental results demonstrate that, the proposed GLGSA remarkably improves the accuracy, stability and efficiency of the original algorithm.

키워드

참고문헌

  1. ACI (2005), 318-05, Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute International.
  2. Camp, C.V. and Akin, A. (2012), "Design of retaining walls using big bang-big crunch optimization", J. Struct. Eng., 138(3), 438-448. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000461
  3. Camp, C.V., Bichon, B.J. and Stovall, S.P. (2005), "Design of steel frames using ant colony optimization", J. Struct. Eng., 131(3), 369-379. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(369)
  4. Caponetto, R., Fortuna, L., Fazzino, S. and Xibilia, M.G. (2003), "Chaotic sequences to improve the performance of evolutionary algorithms", IEEE T. Evolut. Comput., 7(3), 289-304. https://doi.org/10.1109/TEVC.2003.810069
  5. Ceranic, B., Fryer, C. and Baines, R. (2001), "An application of simulated annealing to the optimum design of reinforced concrete retaining structures", Comput. Struct., 79(17), 1569-1581. https://doi.org/10.1016/S0045-7949(01)00037-2
  6. Degertekin, S. (2008), "Harmony search algorithm for optimum design of steel frame structures: a comparative study with other optimization methods", Struct. Eng. Mech., 29(4), 391-410. https://doi.org/10.12989/sem.2008.29.4.391
  7. Gunaratne, M. (2006), The Foundation Engineering Handbook, CRC Press, New York.
  8. Khajehzadeh, M., Taha, M.R., El-Shafie, A. and Eslami, M. (2011), "Modified particle swarm optimization for optimum design of spread footing and retaining wall", J. Zhejiang Univ-Sci. A, 12(6), 415-427. https://doi.org/10.1631/jzus.A1000252
  9. Khajehzadeh, M., Taha, M.R., El-Shafie, A. and Eslami, M. (2012), "A modified gravitational search algorithm for slope stability analysis", Eng. Appl. Artif. Intell., 25(8), 1589-1597. https://doi.org/10.1016/j.engappai.2012.01.011
  10. Khajehzadeh, M., Taha, M.R. and Eslami, M. (2013), "Efficient gravitational search algorithm for optimum design of retaining walls", Struct. Eng. Mech., 45(1), 111-127. https://doi.org/10.12989/sem.2013.45.1.111
  11. Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82(9), 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
  12. May, R.M. (1976), "Simple mathematical models with very complicated dynamics", Nature, 261(5560), 459-467. https://doi.org/10.1038/261459a0
  13. Mirjalili, S.A., Mohd Hashim, S.Z. and Moradian Sardroudi, H. (2012), "Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm", Appl. Math. Comput., 218(22), 11125-11137. https://doi.org/10.1016/j.amc.2012.04.069
  14. Poulos, H.G. and Davis, E.H. (1974), Elastic Solutions for Soil and Rock Mechanics, Wiley, New York.
  15. Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S. (2009), "GSA: a gravitational search algorithm", Inform. Sci., 179(13), 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004
  16. Salajegheh, E. and Gholizadeh, S. (2005), "Optimum design of structures by an improved genetic algorithm using neural networks", Adv. Eng. Softw., 36(11), 757-767. https://doi.org/10.1016/j.advengsoft.2005.03.022
  17. Sarafrazi, S., Nezamabadi-pour, H. and Saryazdi, S. (2011), "Disruption: a new operator in gravitational search algorithm", Sci. Iran., 18(3), 539-548. https://doi.org/10.1016/j.scient.2011.04.003
  18. Sonmez, M. (2011), "Discrete optimum design of truss structures using artificial bee colony algorithm", Struct. Multidiscip. Optim., 43(1), 85-97. https://doi.org/10.1007/s00158-010-0551-5
  19. Vesic, A.S. (1975), Bearing Capacity of Shallow Foundations, Foundation Engineering Handbook, Eds. H. Winterkorn and H.Y. Fang, Van Nostrand Reinhold, New York.
  20. Wang, Y. and Kulhawy, F. (2008), "Economic design optimization of foundations", J. Geotech. Geoenviron. Eng., 134, 1097. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1097)
  21. Yepes, V., Gonzalez-Vidosa, F., Alcala, J. and Villalba, P. (2012), "CO2-optimization design of reinforced concrete retaining walls based on a vns-threshold acceptance strategy", J. Comput. Civil. Eng., 26(3), 378-386. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000140
  22. Yin, M., Hu, Y., Yang, F., Li, X. and Gu, W. (2011), "A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering", Expert. Syst. Appl., 38(8), 9319-9324. https://doi.org/10.1016/j.eswa.2011.01.018

피인용 문헌

  1. Smart monitoring system with multi-criteria decision using a feature based computer vision technique vol.15, pp.6, 2015, https://doi.org/10.12989/sss.2015.15.6.1583
  2. Optimal design for rectangular isolated footings using the real soil pressure vol.37, pp.2, 2017, https://doi.org/10.15446/ing.investig.v37n2.61447
  3. Metaheuristic Optimization of Reinforced Concrete Footings pp.1976-3808, 2018, https://doi.org/10.1007/s12205-018-2010-6
  4. Systematic review of research relating to heavy-duty machine tool foundation systems vol.11, pp.1, 2019, https://doi.org/10.1177/1687814018806106
  5. Optimal dimensioning for the corner combined footings vol.2, pp.2, 2014, https://doi.org/10.12989/acd.2017.2.2.169
  6. Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm vol.63, pp.4, 2014, https://doi.org/10.12989/sem.2017.63.4.429
  7. Modeling for the strap combined footings Part I: Optimal dimensioning vol.30, pp.2, 2014, https://doi.org/10.12989/scs.2019.30.2.097
  8. Optimum Design of RC Footings with Genetic Algorithms According to ACI 318-19 vol.10, pp.6, 2014, https://doi.org/10.3390/buildings10060110