DOI QR코드

DOI QR Code

3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM

  • Jamal-Omidi, Majid (Department of Aerospace Engineering, Space Research Institute, MUT) ;
  • Falah, Mehdi (Department of Aerospace Engineering, Space Research Institute, MUT) ;
  • Taherifar, Davood (Department of Aerospace Engineering, Space Research Institute, MUT)
  • Received : 2013.07.31
  • Accepted : 2014.03.20
  • Published : 2014.05.25

Abstract

Bonded composite-patch repair has been widely used to restore or extend the service life of damaged structures due to its effectiveness as a mechanical repair technique. In this paper using extended finite element method (XFEM), three-dimensional crack models are developed to examine the fracture behavior of centrally cracked aluminum plates repaired with single and double sided composite patches. Stress intensity factor (SIF) at the crack tip is used as the fracture criterion. In this regard, the effects of the crack lengths, patch materials, orientation of plies, adhesive and patch thickness are examined to estimate the SIF of the repaired plate and the repair performance. The obtained results show that composite patches have significant effect on reduction of the SIF at the crack tip. It is also proved that using double symmetric repair, in comparison to single one, reduces considerably SIF at the crack tip. Hence, the residual strength can be improved significantly as well as fatigue life of the structure. Investigation of ply orientation effects shows SIF increase as the ply orientation is changed from $0^{\circ}$ (perpendicular to the advancing crack) to $90^{\circ}$ (parallel to the crack line). However, the effectiveness of the ply orientation depends on the loading direction and the crack direction.

Keywords

References

  1. ABAQUS/CAE Ver 6.10 (2010), User's Manual, Hibbitt, Karlsson & Sorensen, Inc.
  2. Albedah, A., Bouiadjra, B.B., Mhamdia, R., Benyahia, F. and Es-Saheb, M. (2011), "Comparison between double and single sided bonded composite repair with circular shape", Mater. Des., 32(2), 996-1000. https://doi.org/10.1016/j.matdes.2010.08.022
  3. Arenas, J.M., Narbon, J.J. and Alia, C. (2010), "Optimum adhesive thickness in structural adhesive joints using statistical techniques based on weibull distribution", Int. J. Adhes. Adhes., 30(3), 160-165. https://doi.org/10.1016/j.ijadhadh.2009.12.003
  4. Ayatollahi, M.R. and Hashemi, R. (2007), "Computation of stress intensity factors (KI, KII) and T-stress for cracks reinforced by composite patching", Compos. Struct., 78(4), 602-609. https://doi.org/10.1016/j.compstruct.2005.11.024
  5. Baker, A.A., Callinan, R.J., Davis, M.J., Jones, R. and Williams, J.G. (1984), "Repair of mirage III aircraft using the BFRP crack-patching technique", Theor. Appl. Fract. Mech., 2(1), 1-15. https://doi.org/10.1016/0167-8442(84)90035-1
  6. Baker, A.A. (1984), "Repair of cracked or defective metallic components with advanced fibre composites: an overview of Australian work", Compos. Struct., 2(2), 153-181. https://doi.org/10.1016/0263-8223(84)90025-4
  7. Baker, A.A. (1987), "A summary of work on applications of advanced fibre composites at the Aeronautical Research Laboratories", Composites, 9(1), 11-16.
  8. Baker, A.A. and Jones, R. (1988), Bonded Repair of Aircraft Structures, Martinus Nijhoff, Dordrecht.
  9. Baker, A.A. and Chester, R.J. (1993), "Recent advances in bonded composite repair technology for metallic aircraft components", Proceeding of the International Conference on Advanced Composite Materials, 45-49.
  10. Baker, A.A. (1996), "Fatigue studies related to the certification of composite crack patching for primary metallic aircraft structure", Presented at FAA-NASA Symposium on Continued Airworthiness of Aircraft Structures, Atlanta.
  11. Baker, A.A. (1997a), "On the certification of bonded composite repairs primary aircraft structures", Proceeding of the Eleventh International of Composite Materials (ICCM-11), Gold Coast, Australia.
  12. Baker, A.A. (1997b), Joining and Repair of Aircraft Composite Structures, Ed. Mallick, P.K., Part 14, Composite engineering handbook, Marcel Decker Inc., New York.
  13. Bouiadjra, B., Belhouari, M. and Serier, B. (2002), "Computation of the stress intensity factors for repaired cracks with bonded composite patch in mode I and mixed mode", Compos. Struct., 56(4), 401-406. https://doi.org/10.1016/S0263-8223(02)00023-5
  14. Belhouari, M., Bouiadjra, B., Megueni, A. and Kaddouri, K. (2004), "Comparison of double and single bonded repairs to symmetric composite structures: a numerical analysis", Compos. Struct., 65(1), 47-53. https://doi.org/10.1016/j.compstruct.2003.10.005
  15. Bouiadjra, B.B., Fekirini, H., Belhouari, M. and Serier, B. (2008), "Numerical analysis of the behavior of repaired inclined cracks with bonded composite patch having two adhesive bands in aircraft structures", Proceedings of the Institution of Mechanical Engineers Part G. J. Aerospace Eng., 222(7), 963-968.
  16. Bouiadjra, B., Oudad, W., Albedah, A., Benyahia, F. and Belhouari, M. (2012), "Effects of the adhesive disband on the performances of bonded composite repairs in aircraft structures", Mater. Des., 37, 89-95. https://doi.org/10.1016/j.matdes.2011.12.028
  17. Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  18. Callinan, R.J., Rose, L.R.F. and Wang, C.H. (1997), "Three dimensional stress analysis of crack patching", Proceedings of International Conference on Fracture, ICF-9, 2151-2158.
  19. Daux, C., Moes, N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), "Arbitrary branched and intersecting cracks with the extended finite element method", Int. Numer. Meth. Eng., 48(12), 1741-1760. https://doi.org/10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
  20. Dolbow, J. (1999), "An extended finite element with discontinuous enrichment", Ph.D. Dissertation, Northwestern University, USA.
  21. Duarte, C., Hamzeh, O., Liszka, T. and Tworzyd, W. (2001), "A generalized finite element method for the simulation of three-dimensional dynamic crack propagation", Comp. Meth. Appl. Mech. Eng., 190, 227-262.
  22. Giner, E., Sukumar, N., Tarancon, J.E. and Fuenmayor, F.J. (2009), "An ABAQUS implementation of the extended finite element method", Eng. Fract. Mech., 76(3), 347-368. https://doi.org/10.1016/j.engfracmech.2008.10.015
  23. Gu, L., Kasavajhala, A.R.M. and Zhao, Sh. (2011), "Finite element analysis of cracks in aging aircraft structures with bonded composite-patch repairs", Compos. Part B: Eng., 42(3), 505-510. https://doi.org/10.1016/j.compositesb.2010.11.014
  24. Jones, R., Davis, M.J., Callinan, R.J. and Mallinson, G.D. (1982), "Crack patching analysis and design", J. Struct. Mech., 10(2), 177-190. https://doi.org/10.1080/03601218208907409
  25. Jones, R. (1984), "Bonded repair of damage", J. Aero. Soc. India, 36(3), 193-201.
  26. Jones, R. and Chui, W.K. (1999), "Composite repairs to cracks in thick metallic components", Compos. Struct., 4(1), 17-29.
  27. Kaddouri, K., Ouinas, D. and Bouiadjra, B.B. (2008), "FE analysis of the behaviour of octagonal bonded composite repair in aircraft structures", Comput. Mater. Sci., 43(4), 1109-1111. https://doi.org/10.1016/j.commatsci.2008.03.003
  28. Kasavajhala, A.R.M. and Gu, L. (2011), "Fracture analysis of Kevlar-49/epoxy and e-glass/epoxy doublers for reinforcement of cracked aluminum plates", Compos. Struct., 93(8), 2090-2095. https://doi.org/10.1016/j.compstruct.2011.02.012
  29. Liu, X.Y., Xiao, Q.Z. and Karihaloo, B.L. (2004), "XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials", Int. J. Numer. Meth. Eng., 59(8), 1103-1118. https://doi.org/10.1002/nme.906
  30. Madani, K., Touzain, S., Feaugas, X., Benguediab, M. and Ratwani, M. (2008), "Numerical analysis for the determination of the stress intensity factors and crack opening displacements in plates repaired with single and double composite patches", Comput. Mater. Sci., 42(3), 385-393.
  31. Marioli-Riga, Z., Xenos, D. and Vrettos, C.A. (2004), "Standard analysis methodology for the stress analysis of repaired aircraft structures with the method of composite patch repair", Appl. Comp. Mater., 11(4), 191-203. https://doi.org/10.1023/B:ACMA.0000035426.85626.01
  32. Megueni, A., Bouiadjra, B. and Boutabout, B. (2003), "Computation of the stress intensity factor for patched crack with bonded composite repair in pure mode II", Compos. Struct., 59(3), 415-418. https://doi.org/10.1016/S0263-8223(02)00285-4
  33. Megueni, A. and Lousdad, A. (2008), "Comparison of symmetrical double sided and stepped patches for repairing cracked metallic structures", Compos. Struct., 85(1), 91-94. https://doi.org/10.1016/j.compstruct.2007.11.003
  34. Menouillard, T., Elguedj, T. and Combescure, A. (2006), "Mixed-mode stress intensity factors for graded materials", Int. J. Solid. Struct., 43(7-8), 1946-1959. https://doi.org/10.1016/j.ijsolstr.2005.06.021
  35. Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  36. Moran, B. and Shih, C. (1987), "Crack tip and associated domain integrals from momentum and energy balance", Eng. Fract. Mech., 27(6), 615-641. https://doi.org/10.1016/0013-7944(87)90155-X
  37. Nagashima, T., Omoto, T. and Tani, S. (2003), "Stress intensity factor analysis of interface cracks using XFEM", Int. J. Numer. Meth. Eng., 56(8), 1151-1173. https://doi.org/10.1002/nme.604
  38. Okafor, A.C., Singh, N., Enemuoh, U.E. and Rao, S.V. (2005), "Design, analysis and performance of adhesively bonded composite patch repair of cracked aluminum aircraft panels", Compos. Struct., 71(2), 258-270. https://doi.org/10.1016/j.compstruct.2005.02.023
  39. Ouinas, D., Bouiadjra, B.B., Serier, B. and SaidBekkouche, M. (2007), "Comparison of the effectiveness of boron/epoxy and graphite/epoxy patches for repaired cracks emanating from a semicircular notch edge", Compos. Struct., 80(4), 514-522. https://doi.org/10.1016/j.compstruct.2006.07.005
  40. Ouinas, D., Hebbar, A., Bouiadjra, B.B., Belhouari, M. and Serier, B. (2009), "Numerical analysis of the stress intensity factors for repaired cracks from a notch with bonded composite semicircular patch", Compos. Part. B: Eng., 40(8), 804-810. https://doi.org/10.1016/j.compositesb.2009.06.002
  41. Ouinas, D. and Bouiadjra, B., Achour T, Benderdouche N. (2010), "Influence of disbond on notch crack behaviour in single bonded lap joints", Mater. Des., 31(9), 4356-4362. https://doi.org/10.1016/j.matdes.2010.03.048
  42. Ouinas, D., Bouiadjra, B.B., Achour, B. and Benderdouche, N. (2009), "Modelling of a cracked aluminium plate repaired with composite octagonal patch in mode I and mixed mode", Mater. Des., 30(3), 590-595. https://doi.org/10.1016/j.matdes.2008.05.040
  43. Pais, M.J., and Kim, N.H. (2009), "Modeling Failure in Composite Materials with the Extended Finite Element and Level Set Methods", 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, California.
  44. Ratwani, M.M. (1977), Characterization of fatigue crack growth in bonded structures. Volume II: Analysis of cracked bonded structures, AFFDL-TR-77-31, Air force flight dynamics laboratory, Ohio, U.S.
  45. Rose, L.R.F. (1987), "Crack reinforcement by distributed springs", J. Mech. Phys. Solid., 35, 383-405. https://doi.org/10.1016/0022-5096(87)90044-5
  46. Sih, G.C. (1973), Handbook of Stress Intensity Factors, Institute of Fracture and Solid Mechanics, Lehigh University, Bethleham, PA.
  47. Sukumar, N., Moes, N., Moran, B. and Belytschko, T. (2000), "Extended finite element method for threedimensional crack modeling", Int. Numer. Meth. Eng., 48(11), 1549-1570. https://doi.org/10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
  48. Sun, C.T. and Klug, J.A. (1996), "Analysis of cracked aluminum plates repaired with bonded composite patches", AIAA J., 34(2), 369-374. https://doi.org/10.2514/3.13073
  49. Xiao, Q.Z. and Karihaloo, B.L. (2003), "Direct evaluation of accurate coefficients of the linear elastic crack tip asymptotic field", Fatigue Fract. Eng. Mater. Struct., 26(8), 719-729. https://doi.org/10.1046/j.1460-2695.2003.00648.x
  50. Yala, A.A. and Megueni, A. (2009), "Optimization of composite patches repairs with the design of experiments method", Mater. Des., 30(1), 200-205. https://doi.org/10.1016/j.matdes.2008.04.049
  51. Yau, J., Wang, S. and Corten, H. (1980), "A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity", J. Appl. Mech., 47(2), 335-341. https://doi.org/10.1115/1.3153665

Cited by

  1. New optimization method of patch shape to improve the effectiveness of cracked plates repair vol.58, pp.2, 2016, https://doi.org/10.12989/sem.2016.58.2.301
  2. XFEM for fatigue and fracture analysis of cracked stiffened panels vol.57, pp.1, 2016, https://doi.org/10.12989/sem.2016.57.1.065
  3. Surface crack growth prediction under fatigue load using probabilistic S-version finite element model vol.40, pp.11, 2018, https://doi.org/10.1007/s40430-018-1442-8
  4. Damage Tolerant Analysis of Cracked Al 2024-T3 Panels repaired with Single Boron/Epoxy Patch vol.99, pp.2, 2018, https://doi.org/10.1007/s40030-018-0279-6
  5. Analysis of Crack Propagation by Bonded Composite for Different Patch Shapes Repairs in Marine Structures: A Numerical Analysis vol.35, pp.1663-4144, 2018, https://doi.org/10.4028/www.scientific.net/JERA.35.175
  6. Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement vol.66, pp.1, 2014, https://doi.org/10.12989/sem.2018.66.1.037
  7. Calculation of dynamic stress intensity factors and T-stress using an improved SBFEM vol.66, pp.5, 2014, https://doi.org/10.12989/sem.2018.66.5.649
  8. Towards hybridization of composite patch in repair of cracked Aluminum panel : Numerical and experimental study vol.10, pp.6, 2014, https://doi.org/10.1108/ijsi-03-2019-0015
  9. Study of buckling stability of cracked plates under uniaxial compression using singular FEM vol.69, pp.4, 2014, https://doi.org/10.12989/sem.2019.69.4.417
  10. Method using XFEM and SVR to predict the fatigue life of plate-like structures vol.73, pp.4, 2014, https://doi.org/10.12989/sem.2020.73.4.455
  11. Performance assessment and optimization of hybrid composite patch repair of aircraft structure vol.16, pp.5, 2014, https://doi.org/10.1108/mmms-03-2019-0052
  12. Numerical investigation of composite patch repair of inclined cracked panel using XFEM vol.45, pp.p6, 2014, https://doi.org/10.1016/j.matpr.2021.01.643
  13. Numerical Analysis of the Bonded Composite Shape Effects under Thermal Loading in Aircraft Structures vol.1167, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/amr.1167.1