DOI QR코드

DOI QR Code

Identification of salt and drought inducible glutathione S-transferase genes of hybrid poplar

  • Kwon, Soon-Ho (College of Life Science and Biotechnology, Korea University) ;
  • Kwon, Hye-Kyoung (Institute of Life Science and Natural Resources, College of Life Science and Biotechnology, Korea University) ;
  • Kim, Wook (College of Life Science and Biotechnology, Korea University) ;
  • Noh, Eun Woon (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Kwon, Mi (College of Life Science and Biotechnology, Korea University) ;
  • Choi, Young Im (Division of Forest Biotechnology, Korea Forest Research Institute)
  • Received : 2013.11.25
  • Accepted : 2014.01.29
  • Published : 2014.03.31

Abstract

Recent genome annotation revealed that Populus trichocarpa contains 81 glutathione S-transferase (GST) genes. GST genes play important and varying roles in plants, including conferring tolerance to various abiotic stresses. Little information is available on the relationship - if any - between drought/salt stresses and GSTs in woody plants. In this study, we screened the PatgGST genes in hybrid poplar (Populus alba ${\times}$ Populus tremula var. glandulosa) that were predicted to confer drought tolerance based on our expression analysis of all members of the poplar GST superfamily following exposure to salt (NaCl) and drought (PEG) stresses, respectively. Exposure to the salt stress resulted in the induction of eight PatgGST genes and down-regulation of one PatgGST gene, and the level of induction/repression was different in leaf and stem tissues. In contrast, 16 PatgGST genes were induced following exposure to the drought (PEG) stress, and two were down-regulated. Taken together, we identified seven PatgGSTs (PatgGSTU15, PatgGSTU18, PatgGSTU22, PatgGSTU27, PatgGSTU46, PatgGSTU51 and PatgGSTU52) as putative drought tolerance genes based on their induction by both salt and drought stresses.

Keywords

References

  1. Agrawal GK, Jwa NS, Rakwal R (2002) A pathogen-induced novel rice (Oryza sativa L.) gene encodes a putative protein homologous to type II glutathione S-transferases. Plant Sci 163:1153-1160 https://doi.org/10.1016/S0168-9452(02)00331-X
  2. Axarli I, Dhavala P, Papageorgiou AC, Labrou NE (2009) Crystallographic and functional characterization of the fluorodifen-inducible glutathione transferase from Glycine max reveals an active site topography suited for diphenylether herbicides and a novel L-site. J Mol Bio 385:984-1002 https://doi.org/10.1016/j.jmb.2008.10.084
  3. Basantani M, Srivastava A (2007) Plant glutathione transferases - A decade falls short. Can J Bot 85:443-456 https://doi.org/10.1139/B07-033
  4. Bianchi MW, Roux C, Vartanian N (2002) Drought regulation of GST8, encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase. Physiol Plant 116:96-105 https://doi.org/10.1034/j.1399-3054.2002.1160112.x
  5. Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis Glutathione S-Transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340-351 https://doi.org/10.1104/pp.111.181875
  6. Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants: identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859-30869 https://doi.org/10.1074/jbc.M202919200
  7. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531-1545
  8. Galle A, Csiszar J, Secenji M, Guoth A, Cseuz L, Tari I, Gyorgyey J, Erdei L (2009) Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: Response to water deficit. J Plant Physiol 166:1878-1891 https://doi.org/10.1016/j.jplph.2009.05.016
  9. George S, Venkataraman G, Parida A (2010) A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol 167:311-318 https://doi.org/10.1016/j.jplph.2009.09.004
  10. Hughes A L (1994) The evolution of functionally novel proteins after gene duplication. Proc Biol Sci 256:119-124 https://doi.org/10.1098/rspb.1994.0058
  11. Jeppesen MG, Ortiz P, Shepard W, Kinzy TG, Nyborg J, Andersen GR (2003) The crystal structure of the glutathione S-transferase-like domain of elongation factor 1B gamma from Saccharomyces cerevisiae. J Biol Chem 278:47190-47198 https://doi.org/10.1074/jbc.M306630200
  12. Jha B, Sharma A, Mishra A (2011) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep 38:4823-4832 https://doi.org/10.1007/s11033-010-0625-x
  13. Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32:1173-1179 https://doi.org/10.1007/s10529-010-0269-x
  14. Kampranis SC, Damianova R, Atallah M, Toby G, Kondi G, Tsichlis PN, Makris AM (2000) A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J Biol Chem 275:29207-29216 https://doi.org/10.1074/jbc.M002359200
  15. Lan T, Yang ZL, Yang X, Liu YJ, Wang XR, Zenga QY (2009) Extensive functional diversification of the Populus glutathione S-transferase supergene family. Plant Cell 21:3749-3766 https://doi.org/10.1105/tpc.109.070219
  16. Loyall L, Uchida K, Braun S, Furuya M, Frohnmeyer H (2000) Glutathione and a UV light-induced glutathione S-transferase are involved in signalling to chalcone synthase in cell cultures. Plant J 25:237-245
  17. Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122-128 https://doi.org/10.1016/j.pbi.2004.12.001
  18. Mueller LA, Goodman CD, Silady RA, Walbot V (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561-1570 https://doi.org/10.1104/pp.123.4.1561
  19. Oakley AJ (2005) Glutathione transferases: New functions. Curr Opin Struct Biol 15:716-723 https://doi.org/10.1016/j.sbi.2005.10.005
  20. Smith AP, DeRidder BP, Guo WJ, Seeley EH, Regnier FE, Goldsbrough PB (2004) Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor- and copper-treated seedlings. J Biol Chem 279:26098-26104 https://doi.org/10.1074/jbc.M402807200
  21. Soranzo N, Sari-Gorla M, Mizzi L, De Toma G, Frova C (2004) Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Genet Genomics 271:511-521 https://doi.org/10.1007/s00438-004-1006-8
  22. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1-16 https://doi.org/10.1042/0264-6021:3600001
  23. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596-1604 https://doi.org/10.1126/science.1128691
  24. Wagner U, Edwards R, Dixon DP, Mauch F (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49:515-532 https://doi.org/10.1023/A:1015557300450
  25. Wei J, Yanming Z, Yong L, Liang Y, Xiaowen Z, Hua C, Xi B (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32:1173-1179 https://doi.org/10.1007/s10529-010-0269-x

Cited by

  1. Analysis of transcription factors among differentially expressed genes induced by drought stress in Populus davidiana vol.7, pp.3, 2017, https://doi.org/10.1007/s13205-017-0858-7
  2. Genome-wide characterization of protein phosphatase 2C genes in Populus euphratica and their expression profiling under multiple abiotic stresses vol.14, pp.6, 2018, https://doi.org/10.1007/s11295-018-1291-8