DOI QR코드

DOI QR Code

Movement of graphene grain boundary and its interaction with defects during graphene growth

그래핀 결정입계의 이동 및 결함과의 상호작용

  • 황석승 (조선대학교 전자공학과) ;
  • 최병상 (조선대학교 금속재료공학과)
  • Received : 2013.12.02
  • Accepted : 2014.03.07
  • Published : 2014.03.31

Abstract

On poly and single crystalline Cu substrates, the graphene was synthesized by chemical vapor deposition(CVD). Optical microscopic images which were not possible to show the detailed characterization of graphene growth were adjusted and analyzed using image analyzing software. As a result it was possible to show the detailed growth mechanism of graphene by utilizing the image analysis. Nucleation of graphene on Cu grain boundary and its growth behavior into Cu grain are shown. In addition, the movement of graphene grain boundary interacting with Cu grain boundary and pinholes during growth was illustrated in detail, and the cause and result are discussed as a result of those interactions.

다결정 및 단결정 Cu 시편에 CVD를 이용하여 그래핀을 합성 하였으며, 광학현미경 조직사진을 이미지 조절 및 분석 가능한 소프트웨어를 활용하여 광학현미경 조직사진 상에서는 구분이 어려운 그래핀 합성에 따른 미세한 특성들을 이미지 분석을 통하여 구현하였다. 그래핀이 Cu 시편의 결정입계에서 핵 생성하여 Cu 입내로 성장하는 거동을 보이고, 그래핀 성장 시 그래핀 입계의 이동이 Cu 입계 및 기공과 상호작용하는 현상들에 대하여 설명하고, 결과적으로 야기되는 문제들의 원인과 결과를 논하였다.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigogieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, 2004, pp. 666-669. https://doi.org/10.1126/science.1102896
  2. S. V. Morozov, K. S. Novodelov, M. I. Katsnelson, F. Schedin, D. C. Elias, and J. A. Jaszczak, "Giant intrinsic carrier mobilities in graphene and its bilayer," Phys. Rev. Lett., vol. 100, no. 1, 2008, pp. 016602. https://doi.org/10.1103/PhysRevLett.100.016602
  3. Y.-W. Park and S.-Y. Na, "Characteristics of CNT field effect transistor," J. of The Korea Institute of Electronic Communication Sciences, vol. 5, no. 1, 2010, pp. 88-92.
  4. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, and M. P. Halsall, "Control of graphene's properties by reversible hydrogenation: evidence for graphene," Science, vol. 323, no. 5914, 2009, pp. 610-613. https://doi.org/10.1126/science.1167130
  5. C. Gomez-Navarro, M. Burghard, and K. Kern, "Elastic properties of chemically derived single graphene sheets," Nano Lett., vol. 8, no. 7, 2008, pp. 2045-2049. https://doi.org/10.1021/nl801384y
  6. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, and F. Miao, "Superior thermal conductivity of single-layer graphene," Nano Lett., vol. 8, no. 3, 2008, pp. 902-907. https://doi.org/10.1021/nl0731872
  7. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, and Y. Zheng, "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nat. Nanotechnol., vol. 5, no. 8, 2010, pp. 574-578. https://doi.org/10.1038/nnano.2010.132
  8. H. Kim, J. Choi, B. Hong, and Y. Kim, "Study on the Large-scale Synthesis of Graphene films using Chemical Vapor Deposition," Proc. KSME conf., 2010, pp. 43-44.
  9. Y.-Y. Kim, H.-J. Jang, and B.-S. Choi, "Synthesis of graphene and its application to thermal and surface modification," J. of The Korea Institute of Electronic Communication Sciences, vol. 8, no. 4, 2013, pp. 549-554. https://doi.org/10.13067/JKIECS.2013.8.4.549
  10. B.-S. Choi, "Synthesis of large area.single layer/crystalline graphene," J. of The Korea Institute of Electronic Communication Sciences, vol. 9, no. 2, 2014, pp. 167-171. https://doi.org/10.13067/JKIECS.2014.9.2.167
  11. G. Cao, Nanostructures and Nanomaterials - Synthesis, Properties and Applications. Imperial College Press, 2004.