DOI QR코드

DOI QR Code

A comparison of the hydrolase activities of excretory-secretory products and somatic extracts from fish parasitic nematodes, Anisakis simplex sensu stricto and Anisakis pegreffii larvae

어류 기생성 선충 Anisakis simplex sensu stricto와 Anisakis pegreffii 유충의 excretory-secretory products 및 somatic extracts의 가수분해효소 활성 비교

  • Jeon, Chan-Hyeok (Department of Marine Bioscience, Gangneung-Wonju National University) ;
  • Wi, Seong (Department of Marine Bioscience, Gangneung-Wonju National University) ;
  • Kim, Jeong-Ho (Department of Marine Bioscience, Gangneung-Wonju National University)
  • 전찬혁 (강릉원주대학교 해양자원육성학과) ;
  • 위성 (강릉원주대학교 해양자원육성학과) ;
  • 김정호 (강릉원주대학교 해양자원육성학과)
  • Received : 2013.11.08
  • Accepted : 2014.02.14
  • Published : 2014.04.30

Abstract

Hydrolase activities of excretory-secretory products (ESP) and somatic extracts (SE) from Anisakis simplex sensu stricto (s.s.) and Anisakis pegreffii larvae were investigated by using API ZYM kit. In esterase group, acid phosphatase showed high activity from both of A. simplex (s.s.) and A. pegreffii. Esterase (C4) showed activity only from SE and A. simplex (s.s.) showed higher activity than A. pegreffii. Alkaline phosphatase, acid phosphatase and naphthol-AS-BI-phosphohydrolase showed higher activity in 3rd stage larvae than in 4th stage larvae of both species. In aminopeptidase group, only leucine arylamidase showed remarkable activity in SE of both anisakid species, and A. simplex (s.s.) SE showed higher activity than A. pegreffii SE. In glycosidase group, N-acetyl-${\beta}$-glucosaminidase, ${\alpha}$-mannosidase, ${\alpha}$-fucosidase showed higher activity in A. simplex (s.s.) than A. pegreffii, and 4th larvae showed higher activity than 3rd larvae. These differences in hydrolase activity of anisakid nematodes larvae are thought to be due to different metabolism such as growth, moulting, digestion and feeding.

Anisakis simplex sensu stricto와 A. pegreffii의 3기 유충과 4기 유충에서 얻은 excretory-secretory (ES) products 및 somatic extracts의 가수분해효소 활성을 API ZYM kit를 이용하여 비교하였다. Esterase 그룹의 가수분해효소 중 acid phosphatase는 A. simplex (s.s.)와 A. pegreffii 모두에서 높은 활성을 나타냈으며, esterase (C 4)의 경우 somatic extracts에서만 가수분해효소 활성이 나타났는데 A. simplex (s.s.)가 A. pegreffii와 비교하여 3기와 4기 유충 모두에서 2배 가량 높은 활성을 나타냈다. alkaline phosphatase, acid phosphatase 그리고 naphthol-AS-BI-phosphohydrolase의 경우 A. simplex (s.s.)와 A. pegreffii 모두 3기 유충보다 4기 유충에서 더 높은 가수분해효소 활성이 확인되었다. Aminopeptidase 그룹의 가수분해효소 활성은 leucine arylamidase에서 관찰되었는데, somatic extracts의 경우 A. pegreffii 보다 A. simplex (s.s.)에서 가수분해 효소 활성이 두 배 가량 높게 확인되었으며, 대부분의 다른 효소들에서는 활성이 거의 나타나지 않았다. Glycosidase 그룹의 가수분해효소 활성은 N-acetyl-${\beta}$-glucosaminidase, ${\alpha}$-mannosidase 그리고 ${\alpha}$-fucosidase에서 확인되었는데, A. simplex (s.s.) 보다 A. pegreffii에서 높은 가수분해효소 활성을 확인할 수 있었으며, 대부분 4기 유충보다 3기 유충에서 더 높은 가수분해효소 활성이 확인되었다. 이러한 아니사키스속 선충의 종과 유충단계에 따른 가수분해 효소의 활성 차이는 선충의 성장, 탈피, 소화, 섭이 등의 대사과정의 차이에 기인한 것으로 생각된다.

Keywords

References

  1. Arizono, N., Yamada, M, Tegoshi, T and Yoshikawa, M.: Anisakis simplex sensu stricto and Anisakis pegreffii: Biological characteristics and pathogenetic potential in Human anisakiasis. Foodborne. Pathog. Dis. 9: 517-521, 2012. https://doi.org/10.1089/fpd.2011.1076
  2. Audicana, M.T. and Kennedy, M.W.: Anisakis simplex: from Obscure Infectious Worm to Inducer of Immune Hypersensitivity. Clin. Microbiol. Rev., 21: 360-379, 2008. https://doi.org/10.1128/CMR.00012-07
  3. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254, 1976. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Chai, J.Y.: Fish-borne parasitic diseases. Hanyang. Med. Rev., 30: 223-231, 2010 (In Korean with english summary) https://doi.org/10.7599/hmr.2010.30.3.223
  5. D'Amelio, S., Mathiopoulos, K.D., Santos, S.P., Pugachev, O.N., Webb, S.C., Picanco, M. and Paggi, L.: Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda; Ascaridoidea) defined by polymerase chain reactionbase restriction fragement length polymorphism. Int. J. Parasitol., 30: 223-226, 2000. https://doi.org/10.1016/S0020-7519(99)00178-2
  6. D'Amelio, S., Busi, M., Ingrosso, S., Paggi, L and Giuffra, E.: Anisakis. In: Liu D.Y. (eds) Molecular detection of foodborne pathogens. CRC press, pp. 757-768, 2010.
  7. Dziekonska-rynko J., Rokicki, J. and Jablonowski, J.: Activity of selected hydrolases in excretion-secretion products and homogenates from L3 and L4 larvae of Anisakis simplex (Nematoda: Anisakidae) parasitising herring. Acta. Ichthyol. Piscat., 33: 125-135, 2003.
  8. Dziekonska-rynko J. and Rokicki, J.: Activity of selected hydrolases in excretion-secretion products and exracts of adult Contracaecum rudolphii. Wiad. Parasitol. 51: 227-231, 2005.
  9. Dziekonska-rynko J.: The activity of selected hydrolases of adult female Ascaris suum, Goeze 1782. Helminthologia., 43: 59-63, 2006. https://doi.org/10.2478/s11687-006-0012-2
  10. Hotez P.J., Cappello M., Hawdon J., Beckers C., Sakanari J.: Hyaluronidases of the gastrointestinal invasive nematodes Ancylostoma caninum and Anisakis simplex: possible functions in the pathogenesis of human zoonoses. J. Infect. Dis. 170: 918-926, 1994. https://doi.org/10.1093/infdis/170.4.918
  11. Iglesias, L., Valero, A., Benitez, R. and Adroher F.J.: In vitro cultivation of Anisakis simplex: pepsin increases survival and moulting from fourth larval to adult stage. Parasitology., 123: 285-291, 2001.
  12. Kim, W.S., Jeon, C.H., Kim, J.H. and Oh, M.J.: Current status of anisakid nematode larvae infection in marine fishes caught from the coastal area of Korea between 2010 and 2012. J. Fish. Pathol., 25: 189-197, 2012. (In Korean with english summary) https://doi.org/10.7847/jfp.2012.25.3.189
  13. Lee D.L.: The histochemical localization of leucine aminopeptidase in Ascaris lumbricoides. Parasitology. 52: 533-538, 1962. https://doi.org/10.1017/S0031182000027311
  14. Liew, S.M., Tay, S.T., Wongratanacheewin, S. and Puthucheary, S.D.: Enzymatic profiling of clinical and environmental isolates of Burkholderia pseudomallei. Trop. Biomed., 29: 160-168, 2012.
  15. Malagon, D., Benitez, R., Adroher F.J. and Diaz-Lopez, M.: Proteolytic activity in Hysterothylacium aduncum (Nematoda: Anisakidae), a fish gastrointestinal parasite of worldwide distribution. Vet. Parasitol., 183: 95-102, 2011. https://doi.org/10.1016/j.vetpar.2011.07.002
  16. Morris, S.R. and Sakanari, J.A.: Characterization of the serine protease and serine protease inhibitor from the tissue-penetrating nematode Anisakis simplex. J. Biol. Chem. 269: 27650-27656, 1994.
  17. Nadler, S.A., D'Amelio, S., Dailey, M.D., Paggi, L., Siu, S. and Sakanari, J.A.: Molecular phylogenetics and diagnosis of Anisakis, Pseudoterranova, and Contracaecum from northern Pacific marine mamals. J. Parasitol., 91: 1413-1429, 2005. https://doi.org/10.1645/GE-522R.1
  18. Nisbet, A. J. and Billingsley P.F: A comparative survey of the hydrolytic enzymes of ectoparasitic and free-living mites. Int. J. Parasitol. 30: 19-27, 2000. https://doi.org/10.1016/S0020-7519(99)00169-1
  19. Oishi, K. and Hiraoki, M.: Food hygienic studies on Anisakis laravae-IV On the relation between the mortality and the penetration capacity of the larvae into an agar layer. Nippon Suisan Gakkaishi. 39: 1345-1348, 1973. https://doi.org/10.2331/suisan.39.1345
  20. Ondrovics, M., Silbermayr, K., Mitreva, M., Young, N.D., Razzazi-Fazeli, E., Gasser, R.B. and Joachim, A.: Proteomic analysis of Oesophagostomum dentatum (Nematoda) during larval transition, and the effects of hydrolase inhibitors on development. Plos. One. 8: e63955, 2013. https://doi.org/10.1371/journal.pone.0063955
  21. Quiazon, K.M.A., Yoshinaga, T., Ogawa, K. and Yukami, R.: Morphological differences between larvae and in vitro-cultured adults of Anisakis simplex (sensu stricto) and Anisakis pegreffii (Nematoda: Anisakidae). Paratiol. Int. 57: 483-489, 2008.
  22. Rhoads M.L., Fetterer R.H. and Urban J.F.: Secretion of an aminopeptidase during transition of thrid- to fourth-stage larvae of Ascaris suum. J. Parasitol. 83: 780-784, 1997. https://doi.org/10.2307/3284267
  23. Rhodes M.B., Marsh C.L. and Ferguson D.L.: Studies in helminth enzymology. V. An aminopeptidase of Ascaris suum which hydrolyzes L-leucyl-$\beta$-naphthylamide. Exp. Parasitol. 19: 42-51, 1966. https://doi.org/10.1016/0014-4894(66)90051-8
  24. Ruitenberg E.J. and Loendersloot H.J.: Histochemical properties of the excretory organ of Anisakis sp. larvae. J. Parasitol. 56: 1149-1150, 1971.
  25. Sakanari, J.A., Staunton, C.E, Eakin, A.E. and Craik, C.S.: Serine proteases from nematode and protozoan parasites: Isolation of sequences homologs using generic molecular probes. Pro. Natl. Acad. Sci. 86: 4863-4867, 1989. https://doi.org/10.1073/pnas.86.13.4863
  26. Setyobudi, E., Jeon, C.H., Choi, K.H., Lee, S.I. and Kim, J.H.: Molecular identification of anisakid nematodes third stage larvae isolated from common squid (Todarodes pacificus) in Korea. Ocean. Sci. J. 48: 197-205, 2013. https://doi.org/10.1007/s12601-013-0016-z
  27. Smith, J.W. and Wootten, R.: Anisakis and Anisakiasis. Adv. parasitol. 16: 93-163, 1978. https://doi.org/10.1016/S0065-308X(08)60573-4
  28. Suzuki, J., Murata, R., Hosaka, M. and Araki, J.: Risk factors for human Anisakis infection and association between the geographic origins of Scomber japonicus and anisakid nematodes. Int. J. Food. Microbiol., 137: 88-93, 2010. https://doi.org/10.1016/j.ijfoodmicro.2009.10.001
  29. Tabouret, G., Bret-Bennis, L, Dorchies, Ph and Jacquiet, Ph.: Serine protease activity in excretory-secretory products of Oestrus ovis (Diptera: Oestridae) larve. Vet. Parasitol., 114: 305-314, 2003. https://doi.org/10.1016/S0304-4017(03)00157-2
  30. Umehara, A., Kawakami Y., Araki, J. and Uchida, A.: Multiplex PCR for identification of Anisakis simplex sensu stricto, Anisakis pegreffii and the other anisakid nematodes. Parasitol. Int., 57: 49-53, 2008a. https://doi.org/10.1016/j.parint.2007.08.003
  31. Umehara, A., Kawakami, Y., Araki, J., Uchida, A. and Sugiyama, H.: Molecular analysis of Japanese Anisakis simplex worms. Southeast. Asian. J. Trop. Med. Public. Health. 36: 26-31, 2008b.
  32. Wasko, A.P., Martins, C., Oliveira, C and Foresti, F.: Non-destructive genetic sampling in fish. An improved method for DNA extraction from fish fins and scales. Hereditas., 138: 161-165, 2003. https://doi.org/10.1034/j.1601-5223.2003.01503.x
  33. Zhu, X.Q., Podolska, M., Liu, J.S., Yu, H.Q., Chen,H.H., Lin, Z.X., Luo, C.B., Song, H.Q. and Lin, R.Q.: Identification of anisakid nematodes with zoonoticpotential from Europe and China by single-strand conformation polymorphism analysis ofnuclear ribosomal DNA. Parasitol. Res., 101: 1703-1707, 2007. https://doi.org/10.1007/s00436-007-0699-0