DOI QR코드

DOI QR Code

Analysis of Sensing Mechanisms in a Gold-Decorated SWNT Network DNA Biosensor

  • Ahn, Jinhong (NANO Systems Institute (NSI), Seoul National University) ;
  • Kim, Seok Hyang (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Lim, Jaeheung (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Ko, Jung Woo (Technology Commercialization Division-SMEs Cooperation Center, ETRI) ;
  • Park, Chan Hyeong (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Park, Young June (NANO Systems Institute (NSI), Seoul National University)
  • Received : 2013.08.22
  • Accepted : 2014.03.08
  • Published : 2014.04.30

Abstract

We show that carbon nanotube sensors with gold particles on the single-walled carbon nanotube (SWNT) network operate as Schottky barrier transistors, in which transistor action occurs primarily by varying the resistance of Au-SWNT junction rather than the channel conductance modulation. Transistor characteristics are calculated for the statistically simplified geometries, and the sensing mechanisms are analyzed by comparing the simulation results of the MOSFET model and Schottky junction model with the experimental data. We demonstrated that the semiconductor MOSFET effect cannot explain the experimental phenomena such as the very low limit of detection (LOD) and the logarithmic dependence of sensitivity to the DNA concentration. By building an asymmetric concentric-electrode model which consists of serially-connected segments of CNTFETs and Schottky diodes, we found that for a proper explanation of the experimental data, the work function shifts should be ~ 0.1 eV for 100 pM DNA concentration and ~ 0.4 eV for $100{\mu}M$.

Keywords

References

  1. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube molecular wires as chemical sensors," Science, vol. 287, pp. 622-625, 2000. https://doi.org/10.1126/science.287.5453.622
  2. K. Besteman, J. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker, "Enzyme-coated carbon nanotubes as single-molecule biosensors," Nano Lett., vol. 3, no. 6, pp. 727-730, 2003. https://doi.org/10.1021/nl034139u
  3. A. Star, E. Tu, J. Niemann, J. P. Gabriel, C. S. Joiner, and C. Valcke, "Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors," Proc. Natl. Acad. Sci. U.S.A., vol. 103, no. 4, pp. 921-926, 2006. https://doi.org/10.1073/pnas.0504146103
  4. J. Wang, Electroanalysis, "Carbon-nanotube based electrochemical biosensors: A review," vol. 17, no. 1, pp. 7-14, 2005. https://doi.org/10.1002/elan.200403113
  5. J. W. Ko, J.-M. Woo, J. Ahn, J. H. Cheon, J. H. Lim, S. H. Kim, H. Chun, E. Kim and Y. J. Park, "Multi-order dynamic range DNA sensor using a gold decorated SWCNT random network," ACS Nano, vol. 5, no. 6, pp. 4365-4372, 2011. https://doi.org/10.1021/nn102938h
  6. N. Pimparkar, J. Guo, and M. A. Alam, "Performance assessment of sub-percolating nanobundle network transistors by an analytical model," IEDM Tech. Dig., 2005, pp. 534-537.
  7. N. Pimparkar, Q. Cao, S. Kumar, J. Y. Murthy, J. Rogers, and M. A. Alam, "Current-voltage characteristics of long-channel nanobundle thin-film transistors: A "bottom-up" perspective," IEEE Electron Device Lett., vol. 28, no. 2, pp. 157-160, 2007. https://doi.org/10.1109/LED.2006.889219
  8. D. Landheer, G. Aers, W. R. McKinnon, M. J. Deen, and J. C. Ranuarez, "Model for the field effect from layers of biological macromolecules on the gates of metal-oxide-semiconductor transistors," J. Appl. Phys., vo. 98, pp. 044701-1-15, 2005. https://doi.org/10.1063/1.2008354
  9. D. Landheer, W. R. McKinnon, G. Aers, W. Jiang, M. J. Deen, and M. W. Shiwari, "Calculation of the response of field-effect transistors to charged biological molecules," IEEE Sensors Journal, vol. 7, no. 9, pp. 1233-1242, 2007. https://doi.org/10.1109/JSEN.2007.901047
  10. M. W. Shinwari, M. J. Deen, and D. Landheer, "Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design," Microelectronics Reliability, vol. 47, pp. 2025-2057, 2007. https://doi.org/10.1016/j.microrel.2006.10.003
  11. X. Tang, S. Bansaruntip, N. Nakayama, E. Yenilmez, Y.-l. Chang, and Q. Wang, "Carbon nanotube DNA sensor and sensing mechanism," Nano Lett., vol. 6, no. 8, pp. 1632-1636, 2006. https://doi.org/10.1021/nl060613v
  12. S.-H. Jhi, S. G. Louie, and M. L. Cohen, "Electronic properties of oxidized carbon nanotubes," Phys. Rev. Lett., vol. 85, no. 8, pp. 1710-1713, 2000. https://doi.org/10.1103/PhysRevLett.85.1710
  13. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes," Science, vol. 287, pp. 1801-1804, 2000. https://doi.org/10.1126/science.287.5459.1801
  14. I. Heller, A. M. Janssens, J. Mannik, E. D. Minot, S. G. Lemay, and C. Dekker, "Identifying the mechanism of biosensing with carbon nanotube transistors," Nano Lett., vol. 8, no. 2, pp. 591-595, 2008. https://doi.org/10.1021/nl072996i
  15. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris, "Carbon nanotubes as Schottky barrier transistors," Phys. Rev. Lett., vol. 89, pp. 106801-1-4, 2002. https://doi.org/10.1103/PhysRevLett.89.106801
  16. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, Clarendon Press, 2nd edition, 1988.
  17. M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Young-Gui Yoon, M. S. C. Mazzoni, Hyoung Joon Choi, Jisoon Ihm, Steven G. Louie, A. Zettl, and Paul L. McEuen, "Crossed Nanotube Junctions," Science, vol. 288, pp. 494-497, 2000. https://doi.org/10.1126/science.288.5465.494
  18. D. C. Hansen, K. M. Hansen, T. L. Ferrell, and T. Thundat, "Discerning Biomolecular Interactions Using Kelvin Probe Technology," Langmuir, vol. 19, pp. 7514-7520, 2003. https://doi.org/10.1021/la034333w
  19. M. Thompson, L.-E. Cheran, M. Zhang, M. Chacko, H. Huo, and S. Sadeghi, "Label-free Detection of Nucleic Acid and Protein Microarrays by Scanning Kelvin Nanoprobe," Biosens. Bioelectron., vol. 20, pp. 1470-1481, 2005.
  20. Mingquan Zhang, "Label-free Detection of Oligonucleotide Microarrays by the Scanning Kelvin Nanoprobe," Ph.D. dissertation, Dept. of Chemistry, Univ. of Toronto, 2008.

Cited by

  1. A Double-Side CMOS-CNT Biosensor Array With Padless Structure for Simple Bare-Die Measurements in a Medical Environment pp.1940-9990, 2015, https://doi.org/10.1109/TBCAS.2015.2500911
  2. Particle simulation of electrolytic ion motions for noise in electrolyte–insulator–semiconductor field-effect transistors vol.55, pp.12, 2016, https://doi.org/10.7567/JJAP.55.127001
  3. Label-Free DNA Sensors Based on Field-Effect Transistors with Semiconductor of Carbon Materials vol.33, pp.8, 2015, https://doi.org/10.1002/cjoc.201500254