DOI QR코드

DOI QR Code

IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

  • Meyer, M.K. (Idaho National Laboratory) ;
  • Gan, J. (Idaho National Laboratory) ;
  • Jue, J.F. (Idaho National Laboratory) ;
  • Keiser, D.D. (Idaho National Laboratory) ;
  • Perez, E. (Idaho National Laboratory) ;
  • Robinson, A. (Idaho National Laboratory) ;
  • Wachs, D.M. (Idaho National Laboratory) ;
  • Woolstenhulme, N. (Idaho National Laboratory) ;
  • Hofman, G.L. (Argonne National Laboratory) ;
  • Kim, Y.S. (Argonne National Laboratory)
  • 투고 : 2014.03.22
  • 발행 : 2014.04.25

초록

High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

키워드

참고문헌

  1. J. L. Snelgrove, G. L. Hofman, M. K. Meyer, C. L. Trybus, T. C. Weincek, "Development of Very-High Density Low Enriched Uranium Fuels," Nucl. Eng. Des., 178, pp 119-126 (1997). https://doi.org/10.1016/S0029-5493(97)00217-3
  2. M. K. Meyer, T. C. Wiencek, S. L. Hayes, and G. L. Hofman, "Irradiation Behavior of U6Mn-Al Dispersion Fuel Elements," J. Nucl. Mater., 278, pp. 358-363 (2000). https://doi.org/10.1016/S0022-3115(99)00280-9
  3. G. L. Hofman, R. F. Domogala, and G. L. Copeland, "Irradiation Behavior of Low-Enriched U6Fe-Al Dispersion Fuel Elements," J. Nucl. Mater., 150 pp. 238-243 (1987). https://doi.org/10.1016/0022-3115(87)90079-1
  4. J. A. Horak, J. A. Reuscher and D. J. Sasmor, "Operating Experience with Uranium-Molybdenum Fuel in Pulsed Reactors," Symposium on Materials Performance in Operating Nuclear Systems, Ames, Iowa, August (1973).
  5. E. B. Baumeister, and J. D. Wilde, "Selection of the Piqua OMR Fuel Element," report NAA-SR-4239, Atomics International (1960).
  6. M. H. Binstock, "Fuel Element Development for Piqua OMR," report NAA-SR-5119, Atomics International (1960).
  7. S. A. Cottrell, E Edmonds, P. Higginson, and W. Oldfield, "Development and Performance of Dounreay Fast Reactor Metal Fuel," Proceedings of the Third U. N. International Conference on the Peaceful Uses of Atomic Energy, Geneva, A/Conf 28/P/150 (1964).
  8. A. A. Shoudy, W. E. McHugh and M. A. Silliman, "The Effect of Irradiation Temperature and Fission Rate on the Radiation Stability of Uranium-10 wt% Molybdenum Alloy," Radiation Damage in Reactor Materials, International Atomic Energy Agency, Vienna, pp. 133-162 (1963).
  9. A. Savchenko, A. Vatulin, I Konovalov, A. Morozov, V. Sorokin, S. Maranchak, "Fuel of Novel generation for PWR and as Alternative to MOX fuel," Energy Conversion and Management. 51, pp. 1826-1833 (2010). https://doi.org/10.1016/j.enconman.2010.01.027
  10. "Development status of metallic, dispersion and non-oxide advanced and alternative fuels for power and research reactors," International Atomic Energy Agency, IAEA-TECDOC-1374 (2003).
  11. R. M. Willard and A. R. Schmitt, "Irradiation Swelling, Phase Reversion and Intergranular Cracking of U-10wt%Mo Fuel Alloy", Atomics International report NAA-SR-8956 (1964).
  12. H. A. Saller, F. A. Rough, and A. A. Bauer, "Transformation Kinetics of Uranium-Molybdenum Alloys," United States Atomic Energy Commission report BMI-957 (1954).
  13. R. F. Hills, B. R. Butcher, J. A. Heywood, "A study of the effect of cooling rate on the decomposition of the ${\gamma}$-phase in uranium-low molybdenum alloys," J. Less Common Metals, 3:2, pp. 155-169 (1961). https://doi.org/10.1016/0022-5088(61)90006-6
  14. R. F. Hills, B. W. Howlett, B. R. Butcher, "Further studies on the decomposition of the ${\gamma}$ phase in uranium-low molybdenum alloys," J. Less Common Metals, 5:5, pp. 369-373 (1963). https://doi.org/10.1016/0022-5088(63)90050-X
  15. B. W. Howlett, A. J. Eycott, I. K. Kang, D. R. F. West, "The kinetics of the isothermal decomposition of a gamma-phase uranium - 6 atomic % molybdenum alloy," J. Nucl. Mate.s, 9:2, pp. 143-154 (1963). https://doi.org/10.1016/0022-3115(63)90130-2
  16. G. Ostberg, M. Moller, B. Schonntng-Christiansson, "Metallographic study of the transformation of ${\gamma}$ phase into (${\alpha}+{\gamma}{\prime}$) phases in a U-1.6 wt% Mo alloy," J. Nucl. Mater., 10:4, pp. 329-338 (1963). https://doi.org/10.1016/0022-3115(63)90184-3
  17. P. E. Repas, R. H. Goodenow, and R. F. Hehemann, "Transformation Characteristics of U-Mo and U-Mo-Ti Alloys," Trans. Am. Soc. Metals, 13:1 (1964) pp. 150-63
  18. G. Ostberg, B. Lehtinen, "The ${\alpha}+{\gamma}{\prime}$ ordering reaction during isothermal transformation of ${\gamma}$ in a U-1.6 wt% Mo alloy," J. Nucl. Mater., 13:1 (1964) pp. 123-124 https://doi.org/10.1016/0022-3115(64)90078-9
  19. Y. Goldstein and A. Bar-Or, J. Inst. Met., Vol. 95, (1967) pp. 17-21
  20. C. W. Tucker, "Discussion on the Constitution of Alloys by C. L. Pfeil in the Journal Journal of the Institute of Metals, 77: pp. 553-570 (1950)," Report AECD-3092, United States Atomic Energy Commission (1951).
  21. H. A. Saller, F. A. Rough, and D. A. Vaughan, "The Constitution Diagram of Uranium-Rich Uranium-Molybdenum Alloys," report BMI-72, United States Atomic Energy Commission (1951).
  22. H. A. Saller, F. A. Rough, and D. C. Bennett, "The Constitution Diagram of Molybdenum-Rich Uranium-Molybdenum Alloys," report BMI-730, U.S. Atomic Energy Commission (1952)
  23. H. A. Saller, and F. A. Rough, "Alloys of Uranium with Zirconium, Chromium, Columbium Vanadium, and Molybdenum," report BMI-752, United States Atomic Energy Commission (1952).
  24. O. S. Ivanov, T. A. Badaeva, R. M. Sofronova, V. B. Kishenevshii, N. P. Kushnir, and O. S. Ivanov, "Phase Diagrams of Uranium Alloys," Amerind Publishing Co. Pvt. Ltd., New Delhi, India (1983).
  25. A. E. Dwight, "The uranium-molybdenum equilibrium diagram below $900^{\circ}C$," J. Nucl. Mater., 2, pp. 81-87 (March 1960). https://doi.org/10.1016/0022-3115(60)90028-3
  26. B. W. Howlett, A. J. Eycott, I. K. Kang, D. R. F. West, "The kinetics of the isothermal decomposition of a gammaphase uranium - 6 atomic % molybdenum alloy," J. Nucl. Mater., 9, pp. 143-154 (July1963). https://doi.org/10.1016/0022-3115(63)90130-2
  27. P. E. Repas, R. H. Goodenow, and R F Hehemann, "Transformation Characteristics of U-Mo and U-Mo-Ti Alloys," Trans. Am. Soc. Metals, 13, pp. 150-63 (1964).
  28. Y. Goldstein and A. Bar-Or," DecompositionKinetics of Gamma Phase Uranium Alloys Containing 8, 10.8, and 14.3 wt% Molybdenum," J. Inst. Met., 95, pp. 17-21 (1967).
  29. R. J. Van Thyne, D. J. McPherson, "Transformation Kinetics of Uranium-Molybdenum Alloys," Trans. ASM 49, pp. 598-621 (1957).
  30. R. J. Van Thyne, Uranium Alloys Newsletter, 13 (1955).
  31. G. Cabane, G. Donze, "Stabilisation de la Phase ${\gamma}$ dans les Alliages Ternaires a Base D'Uranium-Molybdene," J. Nuc. Mat., 4, pp. 364-73 (1959).
  32. F. Giraud-Heaud, J. Guillaumin, "Formationde Phases de Transition Dans L'Alliage U-7.5Nb-2.5Zr," Acta. Met. 21 1243-52 (1973) https://doi.org/10.1016/0001-6160(73)90165-X
  33. D. A. Lopes, T. A. G. Restivo, A. F. Padilha, J. Nucl. Mater., 440, pp. 304-309 (2013). https://doi.org/10.1016/j.jnucmat.2013.05.014
  34. C. A. W. Peterson, R. R. Vandervoot, The Properties of a Metastable Gamma-phase Uranium Based Alloy: U-7.5Nb-2.5Zr, Lawrence Radiation Laboratory report UCRL-7869, University of California, Livemore (1964).
  35. R. M. Willard and A. R. Schmitt, "Irradiation Swelling, Phase Reversion and Intergranular Cracking of U-10wt%Mo Fuel Alloy", Atomics International report NAA-SR-8956 (1964).
  36. A. A. Shoudy, W. E. McHugh and M. A. Silliman, "The Effect of Irradiation Temperature and Fission Rate on the Radiation Stability of Uranium-10 wt% Molybdenum Alloy," Radiation Damage in Reactor Materials, pp. 133-162 (1963).
  37. M. K. Meyer, G. L. Hofman, S. L. Hayes, C. R. Clark, T. C. Wiencek, J. L. Snelgrove, R. V. Strain, K-H Kim, "Lowtemperature irradiation behavior of uranium- molybdenum alloy dispersion fuels," J. Nucl. Mater., 304, pp. 221-236 (2002). https://doi.org/10.1016/S0022-3115(02)00850-4
  38. A. Leenaers, S. Van den Berghe, E. Koonen, C. Jarousse, F. Huet, M. Trotabas, M. Boyard, S. Guillot, L. Sannen, M. Verwerft, J. Nucl. Mater., 335, pp 39-47 (2004). https://doi.org/10.1016/j.jnucmat.2004.07.004
  39. P. Lemoine, D. M. Wachs, Proceedings of the International Conference on Research Reactors: Safe Management and Effective Utilization Sydney, Australia, (2007).
  40. F. Huet, J. Noirot, V. Marelle, S. Dubois, P. Boulcourt, P. Sacristan, S. Naury, P. Lemoine, "Post Irradiation Examinations on UMo Full Sized Plate - IRIS2 Experiment," Transactions of the 9th International Topical Meeting on Research Reactor Fuel Management, Budapest, Hungary (2005).
  41. S.Van den Berghe, U. Parthoens, G. Cornelis, S. Leenaers E.Koonen, V. Kuzminov, C. Detavernier, "Swelling of U(Mo) dispersion fuel under irradiation-Non-destructive analyses of the SELNIUM plates" Journal of Nuclear Materials 442 (2013) 60-68. https://doi.org/10.1016/j.jnucmat.2013.08.020
  42. D. D. Keiser Jr., J-F Jue, A.B. Robinson, P. Medvedev, J. Gan, B.D. Miller, D.M. Wachs, G.A. Moore, C.R. Clark, M.K. Meyer, M.R. Finlay, "Effects of Irradiation on the Microstructure of U-7Mo Dispersion Fuel with Al-2Si Matrix," J. Nucl. Mater., 425 pp. 156-172 (2012). https://doi.org/10.1016/j.jnucmat.2012.01.013
  43. D. D. Keiser Jr, D.M. Wachs, M.K. Meyer, A.B. Robinson, P. Medvedev, G.A. Moore, "Microstructural Analysis of Irradiated U-Mo Fuel Plates: Recent Results," Transactions of the 16th International Topical Meeting on Research Reactor Fuel Management, Prague, Czech Republic, March 18-22, (2012).
  44. G. L. Hofman and M. K. Meyer, "Progress in Irradiation Performance of Experimental Uranium-Molybdenum Dispersion Fuel", Proceedings of the International Meeting on Reduced Enrichment for Research and Test Reactors, Bariloche, Argentina, November 3-8 (2002).
  45. I. G. Prokofiev, T. C. Wiencek, B. D. Merkle, E. O. Carney, "Monolithic Fuel Plates Diffusion Bonded by $Electroconsolidation^{(R)}$ Process Technology", Proceedings of the International Meeting on Reduced Enrichment for Research and Test Reactors, Boston, Massachusetts, USA, November 6-10 (2005).
  46. C. Jarousse, P. Lemoine, P. Boulcourt , A. Röhrmoser, and W. Petry, "Monolithic UMo Full Size Prototype Plates for IRIS V Irradiation," Transactions of the 11th International Topical Meeting on Research Reactor Fuel Management, Lyon, France, March 11-15 (2007).
  47. D. E. Burkes, D. E, N. P. Hallinan, K. L. Shropshire, P. B. Wells, "Effects on Applied Load on 6061-T6 Aluminum Joined Employing a Novel Friction Bonding Process," Metal. Mater. Trans., 39, pp. 2852-2861 (2008). https://doi.org/10.1007/s11661-008-9644-9
  48. J. F.Jue, etal, "Fabrication of Monlithic RERTR Fuels by Hot Isostatic Pressing;" Journal of Nuclear Technology, vol 72, No,2, pg.204 210, Nov 2010
  49. G. A. Moore, M.C. Marshall, "Co-rolled U-10Mo/Zirconium Barrier-Layer Monolithic Fuel Foil Fabrication Process," Idaho National Laboratory report INL/EXT-10-17774 (2010).
  50. J. F. Jue, D. D. Keiser, C. R. Breckenridge, G. A. Moore, M. K. Meyer, "Microstructural Characteristics of HIPbonded Monolithic Nuclear Fuels with a Diffusion Barrier," J. Nucl. Mater., 448, pp. 250-258 (2014). https://doi.org/10.1016/j.jnucmat.2014.02.004
  51. A. B. Robinison and M. R. Finlay, "RERTR-7 Post Irradiation Examination (PIE) Letter Report," Idaho National Laboratory, Idaho National Laboratory report INL/EXT-07-13271 (2007).
  52. D. D. Keiser Jr., A. B. Robinson, J.-F. Jue, P. Medvedev, D. M. Wachs, M. R. Finlay, "Microstructural development in irradiated U-7Mo/6061 Al alloy matrix dispersion fuel," J. Nucl. Mater., 393, pp. 311-320 (2009). https://doi.org/10.1016/j.jnucmat.2009.06.018
  53. A. Leenaers, S. Van den Berghe, J. Van Eyken, E. Koonen, F. Charollais, P. Lemoine, Y. Calzavara, H. Guyon , C. Jarousse, D. Geslin, D. Wachs, D. Keiser, A. Robinson, G. Hofman, Y. S. Kim, "Microstructural evolution of U(Mo)-Al(Si) dispersion fuel under irradiation - Destructive analyses of the LEONIDAS E-FUTURE plates," J. Nucl. Mater., 441, pp. 439-448 (2013). https://doi.org/10.1016/j.jnucmat.2013.06.027
  54. D. L. Porter, "Zry Clad Experiment Report," Idaho National Laboratory report INL/EXT-12-27273 (2012).
  55. O. A. Golosov, S. A. Averin, M. S. Lyutnikov, et al, "Electronmicroscopic studies of barrier coatings on U-Mo fuel irradiation to 60% burnup," Atomic Energy, 110, pp. 486-494
  56. O. S. Ivanov, G. N. Bagrov, "Isothermal cross sections of the triple system uranium-molybdenum-zirconium at $1000^{\circ}C-625^{\circ}C$.," Struct. Alloys Certain Systems Cont. Uranium Thorium 1963:131
  57. O. S. Ivanov, G. N. Bagrov. "Isothermal cross sections at $600^{\circ}C$, $575^{\circ}C$, and $500^{\circ}C$, polythermal sections, and the phase diagram of the triple system Uranium molybdenumzirconium." Struct. Alloys, Certain Systems Cont. Uranium Thorium 1963:154
  58. K. Huang, Y. Park, D. Keiser, and Y. Sohn, "Interdiffusion Between Zr Diffusion Barrier and U-Mo Alloy," J. Phase Equil. Diffus., 33, pp. 443-449 (2013).
  59. E. Perez, B. Yao, D. D. Keiser Jr, and Y. H. Sohn, "Microstructural analysis of as processed U-10 wt.% Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier," J. Nucl. Mater., 402, pp. 8-14 (2010). https://doi.org/10.1016/j.jnucmat.2010.04.016
  60. G. V. Kidson, G. D. Miller, "A study of the interdiffusion of aluminum and zirconium," J. Nucl. Mater., 12, pp. 61-69 (1964). https://doi.org/10.1016/0022-3115(64)90108-4
  61. A. Laik, K. Bhanumurthy, G. B. Kale, "Intermetallics in the Zr-Al diffusion zone," Intermetallics, 12, pp. 69-74 (2004). https://doi.org/10.1016/j.intermet.2003.09.002
  62. J. Dickson, L. Zhou, A. Ewh, M. Fu, D. Keiser, Jr., and Y. Sohn "Interdiffusion and Reaction between Zr and Al Alloys from 450 to $625^{\circ}C$," Intermetallics, 49 pp. 154-162 (2014). https://doi.org/10.1016/j.intermet.2013.12.012
  63. G. L. Hofman, L .C. Walters, T. H. Bauer, "Metallic Fast Reactor Fuels," Prog. Nucl. Ener., 31, pp. 83-110 (1997). https://doi.org/10.1016/0149-1970(96)00005-4
  64. J. Gan, D. D. Keiser, B. D. Miller, A. B. Robinson, J. F. Jue, P. Medvedev, D. M. Wachs, "TEM Characterization of U-7Mo/Al-2Si Dispersion Fuel Irradiated to Intermediate and High Fission Densities," J. Nucl. Mater., 424, pp. 43-50 (2012). https://doi.org/10.1016/j.jnucmat.2012.02.001
  65. J. S. Van den Berhe, W. Van Renterghem, A. Leenaers, "Transmission Electron Microscopy Investigation of Irradiated U-7wt.% Mo Dispersion Fuel," J. Nucl. Mater., 375, pp. 340-346 (2008). https://doi.org/10.1016/j.jnucmat.2007.12.006
  66. J. Rest, "Evolution of fission-gas-bubble-size distribution in recrystallized U-10Mo nuclear fuel," J. Nucl. Mater., 407 pp. 55-58 (2010). https://doi.org/10.1016/j.jnucmat.2010.07.009
  67. Y. S. Kim, G. L. Hofman, J. S. Cheon, "Recrystallization and swelling of U-Mo fuel during irradiation," Transactions of the 16th International Topical Meeting on Research Reactor Fuel Management, Prague, Czech Republic, March 18-22, (2012).
  68. Y. S. Kim, G. L. Hofman, "Fission Product Induced Swelling of U-Mo Alloy Fuel", J. Nucl. Mater., 419, pp. 291-301 (2011). https://doi.org/10.1016/j.jnucmat.2011.08.018
  69. D. Keiser, Jr., et al., "SEM Characterization of the High Burn-up Microstructure of U-7Mo Alloy", Transactions of the 18th International Topical Meeting on Research Reactor Fuel Management, Ljubljana, Slovenia, March 30-April 3 (2014).
  70. J. Gan, et al., "TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy", Transactions of the 18th International Topical Meeting on Research Reactor Fuel Management, Ljubljana, Slovenia, March 30-April 3 (2014).
  71. Y. S. Kim, G. L. Hofman, J. S. Cheon, A. B. Robinson, and D. M. Wachs "Fission Induced Swelling and Creep in Uranium Molybdenum Alloy Fuel," J. Nucl. Mater., 437, pp. 37-46 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.346
  72. A. Leenaers, et. al., "Microstructure of U3Si2 Fuel Plates Submitted to a High Heat Flux," J. Nucl. Mater., 327, pp. 121-129 (2004). https://doi.org/10.1016/j.jnucmat.2004.01.025
  73. Z. Hashin and S. Shtrikman, "A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials," J. Applied Physics, 33, pp. 3125-3131 (1962). https://doi.org/10.1063/1.1728579

피인용 문헌

  1. Neutron and hard X-ray diffraction studies of the isothermal transformation kinetics in the research reactor fuel candidate U–8 wt%Mo vol.49, pp.3, 2016, https://doi.org/10.1107/S1600576716005744
  2. Observed Changes in As-Fabricated U-10Mo Monolithic Fuel Microstructures After Irradiation in the Advanced Test Reactor vol.69, pp.12, 2017, https://doi.org/10.1007/s11837-017-2564-7
  3. A Rate-Theory–Phase-Field Model of Irradiation-Induced Recrystallization in UMo Nuclear Fuels vol.69, pp.12, 2017, https://doi.org/10.1007/s11837-017-2611-4
  4. Microstructure characterization and phase field analysis of dendritic crystal growth of γ-U and BCC-Mo dendrite in U–33 at.% Mo fast reactor fuel pp.2044-5326, 2017, https://doi.org/10.1557/jmr.2017.425
  5. Deterministic Phonon Transport Predictions of Thermal Conductivity in Uranium Dioxide With Xenon Impurities vol.140, pp.5, 2018, https://doi.org/10.1115/1.4038554
  6. Characterization of Plasma-Sprayed Zirconium Coatings on Uranium Alloy Using Neutron Diffraction pp.1544-1016, 2019, https://doi.org/10.1007/s11666-018-0804-1
  7. Phase Transformations and Microstructural Development in the U-10 Wt Pct Mo Alloy with Varying Zr Contents After Heat Treatments Relevant to the Monolithic Fuel Plate Fabrication Process pp.1543-1940, 2019, https://doi.org/10.1007/s11661-018-4987-3
  8. Effects of Rolling Speed and Reduction on Rolling Simulation Results of Monolithic Fuel Plates vol.19, pp.6, 2018, https://doi.org/10.1515/ijnsns-2017-0155