DOI QR코드

DOI QR Code

Analysis of Current Distribution around a Scaled-down Abalone System to determine the cause of mass mortality of abalone, Haliotis discus hannai (Ino, 1952)

북방전복 Haliotis discus hannai (Ino, 1952) 의 폐사규명을 위한 모형 양식시설 주변의 조류 분포 분석

  • Cha, Bong-Jin (Fisheries System Engineering Division, National Fisheries Research & Development Institute) ;
  • Choi, Yang-Ho (Fisheries Resources and Environment Division, Southwest Sea Fisheries Research Institute) ;
  • Yang, Young-Soo (Fisheries System Engineering Division, National Fisheries Research & Development Institute) ;
  • Park, Min-Woo (Aquaculture Industry Division, East Sea Fisheries Research Institute, National Fisheries Research & Development Institute) ;
  • Kim, Byeong-Hak (Aquaculture Industry Division, East Sea Fisheries Research Institute, National Fisheries Research & Development Institute) ;
  • Pean, Yong-Bum (Doowontech)
  • 차봉진 (국립수산과학원 시스템공학과) ;
  • 최양호 (국립수산과학원 남서해연구소 자원환경과) ;
  • 양용수 (국립수산과학원 시스템공학과) ;
  • 박민우 (국립수산과학원 남서해연구소 해역산업과) ;
  • 김병학 (국립수산과학원 남서해연구소 해역산업과) ;
  • 편용범 (두원테크)
  • Received : 2014.03.10
  • Accepted : 2014.03.26
  • Published : 2014.03.31

Abstract

This study is aimed at figuring out the reasons of the mass mortality of abalone and the increase in its mortality rate in the sea cage. The study suggests that lack seawater circulation in an abalone aquaculture cage is an important culprit for it. We analyzed the current distribution around a 1/20 scaled-down abalone unit cage of 4 rows and 10 columns by fluid flow visualization technique (PIV : Particle Image Velocimetry). The speed of current in the model cage definitely slowed down in the first column of a unit cage. We also observed currents going down to the bottom of a water tank from the unit cages placed in the middle. The speed of wakes behind inside the row in the middle was slower than that outside the row. Water velocity inside and outside a real abalone cage at Nowha Island adjacent to Wan Island was measured to verify results from the tank test. The speed of current in front of the cage by 2 m was 0.11 m/sec while it was only 0.0009 m/sec inside the cage. It had similar findings with those of a tank test.

완도에서 주로 사용되는 4열 10행의 가두리 1조를 조합한 형태로 구성된 PE프레임의 내파성 전복가두리를 1/20로 축소하여 모형을 만들고 유체흐름 가시화 실험을 통해 전복가두리 주위의 해수의 흐름을 파악했다. 실험의 결과를 검증하기 위해 노화도 현장의 전복양식 가두리의 내부와 외부의 유속을 측정하였다. 연구의 결과는 아래와 같다. 1. 모형실험에서 전복가두리에 입사하는 해수는 대부분 첫 번째 단위 가두리 (칸) 를 통과하지 못하였다. 2. 모형 전복가두리 중앙 부위에서는 가두리에서 수조바닥으로 향하는 흐름을 관측하였다. 3. 모형 전복가두리의 외측 열을 빠져나가는 유체의 유속이 내측 열을 빠져나가는 유체의 유속보다 빨랐다. 4. 노화도의 현장 양식가두리의 2 m앞의 조류의 유속은 0.11 m/sec였지만 가두리 칸 내부의 유속은 0.0009 m/sec로 거의 움직임이 없었다. 5. 현재의 전복가두리 형태는 해수의 유통이 원활하지 않아 가두리 내부로 새로운 해수를 공급하기 어려울 것으로 판단된다.

Keywords

References

  1. Jeong SC, Jee YJ and Son PW. 1994. Indoor tank culture of the abalone Haliotis discus hannai I. Effect of tank shape and stocking density on the growth of young abalone. The Korean Journal of Aquaculture, 7(1): 9-20.
  2. Jee YJ, Yoo SK, RHO S and Kim SH. 1988. The stocking density and growth of young abalone Haliotis discus hannai Ino cultured in the hanging net cage. Bull. Nat. Fish. Res. Dev. Agency, 42:59-69.
  3. Kim JW, Lee SM, Han SJ, Kim BH and Park SR. 1998. Effect of experimental diet, commercial diets and algae (Undaria) on growth and body composition among juvenile abalones (Haliotis discus, Haliotis sieboldii and Haliotis discus hannai). The Korean Journal of Aquaculture, 11(4): 505-512.
  4. Yoon HS, Rha SJ, Cha YB, Cho JH, Kim KY and Choi SD. 2004. Growth and survival rate on density of Haliotis discus hannai in cage culture. J. Kor. Fish. Soc., 37(4): 287-294.
  5. Lee KS. 2008. The effects of suspended solids on the mortality and the glycogen content of abalone, Haliotis discus hannai. Journal of the Korean Society of Marine Environment & Safety, 14(3): 183-187.
  6. Son MH, Park MW, Kim KW, Kim KD and Kim SK. 2010. Staturs of the abalone (Haliotis discus hannai) aquaculture for optimal rearing technique in marine net cage. Jour. Fish. Mar. Sci. Edu., 22(3): 362-373.
  7. Won KM, Kim BH, Jin YG, Park YJ, Son MH, Cho MY, Park MA and Park MW. 2013. Infestation of the abalone, Haliotis discus hannai, by the Polydora under intensive culture conditions in Korea. Journal of fish pathol., 26(3): 출판예정. https://doi.org/10.7847/jfp.2013.26.3.139
  8. Naylor MA, Kaiser H and Jones CLW. 2011. Water quality in a serial-use raceway and its effect on the growth of South African abalone, Haliotis midae Linnaeus, 1758. Aquaculture Research, 42: 918-930. https://doi.org/10.1111/j.1365-2109.2010.02660.x
  9. Park CJ, Min BH, Kim KS, Lee JW, Lee JH, Noh JK, Kim HC, Park JW and Myeong JI. 2011. Physiologicsl responses on low water-temperature stress of pacific abalone, Haliotis discus hannai. Korean J. Malacol, 27(4): 317-322. https://doi.org/10.9710/kjm.2011.27.4.317
  10. Kim TH, Yang MH, Choe MK, Han SJ and Yeu IK. 2005. Physiological studies on acute water-temperature stress of juvenile abalone, Haliotis discus hannai. The Korean Journal of Aquaculture, 18(1): 7-12.
  11. Kim TH, Kim KJ, Choe MK and Yeu IK. 2006. Physiological changes of juvnvile abalone, Haliotis sieboldii exposed to acute water-temperature stress. The Korean Journal of Aquaculture, 19(2): 77-83.
  12. Bae BS, An HC, Bae JH, Park CD and Kim IO. 2006. The characteristics of the flow field around canvas kite using the PIV. J. Kor. Soc. Fish. Tech., 42: 86-96. https://doi.org/10.3796/KSFT.2006.42.2.086
  13. Cha BJ, Kim HY, Bae JY, Yang YS and Kim DH. 2013. Analysis of the hydrodynamic characteristics of chain-link woven copper alloy nets for fish cages. Aquacultural Engineering, 56: 79-86. https://doi.org/10.1016/j.aquaeng.2013.05.002
  14. Okamoto K, Nishio S, Saga T and Kobayashi T. 2000. Standard images for particle-image velocimetry. Meas. Sci. Tech., 11: 685-691. https://doi.org/10.1088/0957-0233/11/6/311
  15. Keane RD and Adrian RJ. 1992. Theory of cross-correlation analysis of PIV images. Appl. Sci. Res., 49: 191-215. https://doi.org/10.1007/BF00384623
  16. Beveridge M. 2004. Cage Aquaculture. Blackwell publishing 54.
  17. Loland G. 1993. Current forces on, and water flow through and around, floating fish farms. Aquaaculutre International, 1: 72-89. https://doi.org/10.1007/BF00692665
  18. Thomas S, Roberts RD and Lokman PM. 2006. Effects of temperature on growth of juvenile blackfoot abalone, Haliotis iris Gmelin, Aquaculture Research, 37: 1441-1449. https://doi.org/10.1111/j.1365-2109.2006.01580.x
  19. Soloff SM, Adrian RJ and Liu ZC. 1997. Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Tech., 8: 1441-1454. https://doi.org/10.1088/0957-0233/8/12/008
  20. FAO: http://www.fao.org/fishery/statistics/global-aquacultureproduction/en.

Cited by

  1. The Effects of Fed Artificial Diet and Seaweed Diet on Growth and Body Composition of Juvenile Abalone, Haliotis discus hannai by Land-based Tank Immediate Culture Types vol.31, pp.2, 2015, https://doi.org/10.9710/kjm.2015.31.2.73
  2. 해상가두리 및 육상수조 중간양성 방식에 따른 북방전복, Haliotis discus hannai 치패의 성장 및 생존율 vol.30, pp.3, 2014, https://doi.org/10.9710/kjm.2014.30.3.235
  3. 수하식 큰가리비 양식의 채롱간 조류의 흐름 간섭현상 규명 vol.30, pp.3, 2014, https://doi.org/10.9710/kjm.2014.30.3.273
  4. 남해 완도-도암만 연성기질의 여름철 대형저서동물의 군집구조 vol.23, pp.2, 2014, https://doi.org/10.7850/jkso.2018.23.2.091