DOI QR코드

DOI QR Code

The Electrical Characterization and Relaxation Behavior of Ag(Ta0.8Nb0.2)O3 Ceramics

  • Kim, Young-Sung (Department of Electrical Engineering, Soong-Sil University) ;
  • Kim, Jae-Chul (Department of Electrical Engineering, Soong-Sil University) ;
  • Jeong, Tae-Hoon (Department of Smart Grid Research, Korea Electrotechnology Research Institute) ;
  • Nam, Sung-Pill (Department of Smart Grid Research, Korea Electrotechnology Research Institute) ;
  • Lee, Seung-Hwan (Department of Materials Engineering, Kwang-Woon University) ;
  • Kim, Hong-Ki (Department of Materials Engineering, Kwang-Woon University) ;
  • Lee, Ku-Tak (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2014.01.15
  • Accepted : 2014.03.04
  • Published : 2014.04.25

Abstract

$Ag(Ta,Nb)O_3$ materials have a perovskite structure with a low loss tangent. These materials have been widely researched for their applications as high-frequency, passive components. Also, $Ag(Ta,Nb)O_3$ materials have weak frequency dispersion with high dielectric permittivity which gives them enormous potential for use in electronic components, including the filters, and embedded capacitors. Therefore, our research will discuss the structural and electrical relaxation properties of $Ag(Ta_{0.8}Nb_{0.2})O_3$ ceramics for device applications. We will investigate using X-ray diffraction to understand their structural properties and will analyze voltage dependent leakage current and timedependent relaxation behavior to understand their material properties.

Keywords

References

  1. H. J. Bae, J. Koo, and J. P. Hong, J. Elect. Engin. Tech. 1, 120 (2006). https://doi.org/10.5370/JEET.2006.1.1.120
  2. I. S. Kim, J. S. Song, S. J. Jeong, S. H. Jeon, J. K. Chung, and W. J. Kim, J. Elect. Engin. Tech. 2, 391 (2007). https://doi.org/10.5370/JEET.2007.2.3.391
  3. C. I. Lee, K. T. Kim, and C. I. Kim, Trans. Electr. Electron. Mater. 7, 67 (2001).
  4. R. Ratheesh, H. Sreemoolanadhan, and MT. Sebastian, J. Solid State Chem. 131, 2 (1997) [DOI: http://dx.doi.org/10.1006/jssc.1996.7240].
  5. J. H. Koh, B. M. Moon and A. Grishin, Integ. Ferro. 39, 1361 (2001) [DOI: http://dx.doi.org/10.1080/10584580108011965]
  6. A. Kania, Phase Transit. 3, 131 (1983) [DOI: http://dx.doi.org/10.1080/01411598308244116].
  7. X. Hu, M. Valant and D. Suvorov, J. Appl. Phys. 99, 12410 (2006) [DOI: http://dx.doi.org/10.1063/1.2209552].
  8. L. Li, J. Zhao, P. Zhang, R. Guo and H.Wang, J. Rare Earths 25, 163 (2007) [DOI: http://dx.doi.org/10.1016/S1002-0721(07)60548-1].
  9. XY. Guo, N. Zhu, M. Xiao and XW. Wu, J. Am. Ceram. Soc. 90, 2467 (2007) [DOI: http://dx.doi.org/10.1111/j.1551-2916.2007.01802.x].
  10. LX. Li, XW. Wu and YM. Wang, J. Electroceram. 11, 163 (2003) [DOI: http://dx.doi.org/10.1023/B:JECR.0000026370.24972.6a].
  11. L. Cao, L. Li, P. Zhang, H. Wu and X. Wei. J. Alloys Compd. 487, 527 (2009) [DOI: http://dx.doi.org/10.1016/j.jallcom.2009.07.178].
  12. K. T. Lee, S.W Yun and J.H. Koh, J. Kor. Phy. Soc. 59, 2478 (2011) [DOI: http://dx.doi.org/10.3938/jkps.59.2478].
  13. E. K. Akdogan, J. Bellotti, and A. Safari, Inst. Electr. Electron. Eng. 1, 191 (2000) [DOI: http://dx.doi.org/10.1109/ISAF.2000.941539].
  14. T. H. Yeom, K. T. Han, S. H. Choh, and K. S. Hong, J. Korean Phys. Soc. 28, 113 (1995) [DOI: http://dx.doi.org/10.3938/jkps.28.113].

Cited by

  1. Development and Electrical Properties of (Ca0.7Sr0.3) (Zr0.8Ti0.2)O3 Thin Film Applied to Embedded Decoupling Capacitors vol.35, pp.7, 2014, https://doi.org/10.1109/LED.2014.2320295
  2. The Study on the Improvement of Piezoelectric and Electrical Characteristics of Bi0.5(Na0.78K0.22)0.5TiO3Ceramics Modified by the La-based ABO3Pervskite Structure vol.27, pp.11, 2014, https://doi.org/10.4313/JKEM.2014.27.11.707