DOI QR코드

DOI QR Code

A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes

  • Received : 2012.04.26
  • Accepted : 2014.02.07
  • Published : 2014.04.25

Abstract

The process parameter in optimized KOH alkali activation of soft carbon series coke material in high purity was set with DOE experiments design. The activated carbon was produced by performing the activation process based on the set process parameters. The specific surface area was measured and pore size was analyzed by $N_2$ absorption method for the produced activated carbon. The surface functional group was analyzed by Boehm method and metal impurities were analyzed by XRF method. The specific surface area was increased over 2,000 $m^2/g$ as the mixing ratio of activation agent increased. The micro pores in $5{\sim}15{\AA}$ and surface functional group under 0.4 meq/g were obtained. The contents of the metal impurity in activated carbon which is the factor for reducing the electrochemical characteristics was reduced less than 100 ppm through the cleansing process optimization. The electrochemical characteristics of activated carbon in 38.5 F/g and 26.6 F/cc were checked through the impedance measuring with cyclic voltammetry scan rate in 50~300 mV/s and frequency in 10 mHz ~100 kHz. The activated carbon was made in the optimized activation process conditions of activation time in 40 minutes, mixing ratio of activation agent in 4.5 : 1.0 and heat treatment temperature over $650^{\circ}C$.

Keywords

References

  1. C. Y. Kang, Y. S. Shin, and J. D. Lee, Korean Chem. Eng. Res., 49, 10 (2011). https://doi.org/10.9713/kcer.2011.49.1.010
  2. S. H. Yang, I. J. Kim, I. S. Choi, and H. S. Kim, J. Korean Electrochem. Soc., 12, 34 (2009) [DOI: http://dx.doi.org/10.5229/JKES.2009.12.1.034
  3. J. K. Sun, E. H. Um, and C. T. Lee, Appl. Chem. Eng., 21, 11 (2010).
  4. K. H. Lee, D. K. Kim, J. H. Kim, and W. T. Lee, Theories and Applications of Chemical Engineering, 6, 4809 (2000).
  5. Y. D. XIE, W. M. QIAO, W. Y. ZHANG, G. W. SUN, and L. C. LING, New Carbon Materials, 25, 248 (2010) [DOI: http://dx.doi.org/10.1016/S1872-5805(09)60031-7].
  6. S. Sepehri, B. B. Garcia, Q. Zhang, and G. Cao, Carbon, 47, 1436 (2009) [DOI: http://dx.doi.org/10.1016/j.carbon.2009.01.034].
  7. R. H. Bradley, M. W. Smith, A. Andreu, and M. Falco, Appl. Surf. Sci., 257, 2912 (2001) [DOI: http://dx.doi.org/10.1016/j.apsusc.2010.10.089].
  8. S. Ishimoto, Y. Asakawa, M. Shinya, and K. Naoi, J. Electrochem. Soc., 156, A563 (2009) [DOI: http://dx.doi.org/10.1149/1.3126423].
  9. M. A. Lillo-Rodenas, D. Cazorla-Amoros, and A. Linares-Solano, Carbon, 41, 267 (2003) [DOI: http://dx.doi.org/10.1016/S0008-6223(02)00279-8].
  10. J. H. Jang and S. M. Oh, J. Korean Electrochem. Soc., 13, 223 (2010) [DOI: http://dx.doi.org/10.5229/JKES.2010.13.4.223
  11. C. Banciu, A. Bara, I. Ion, D. Patroi, and L. Leonat, J. Optoelectron. Adv. Mater., 4, 1717 (2010).
  12. Y. S. Wang and C. Y. Wang, New Carbon Materials, 25, 376 (2010) [DOI: http://dx.doi.org/10.1016/S1872-5805(09)60041-X
  13. M. Kawaguchi, A. Itoh, S. Yagi, and H. Oda, J. Power Sources, 172, 481 (2007) [DOI: http://dx.doi.org/10.1016/j.jpowsour.2007.07.023].
  14. L. Tang, L. Zhan, G. Z. Yang, J. H. Yang, Y. L. Wang, W. M. Qiao, and L. C. Ling, New Carbon Materials, 26, 237 (2011) [DOI: http://dx.doi.org/10.1016/S1872-5805(11)60079-6].
  15. M. Inagaki, H. Konno, and O. Tanaike, J. Power Sources, 195, 7880 (2010) [DOI: http://dx.doi.org/10.1016/j.jpowsour.2010.06.036].
  16. M. X. Wang, C. Y. Wang, M. M. Chen, Y. S. Wang, Z. Q. Shi, X. Du, T. Q. Li, and Z. J. Hu, New Carbon Materials, 25, 285 (2010) [DOI: http://dx.doi.org/10.1016/S1872-5805(09)60034-2].
  17. I. Mochida, S. H. Yoon, and W. Qiao, J. Braz. Chem. Soc., 17, 1059 (2006) [DOI: http://dx.doi.org/10.1590/S0103-50532006000600002].

Cited by

  1. Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors vol.125, 2016, https://doi.org/10.1016/j.enconman.2016.06.006
  2. Sustainable fabrication of nitrogen activated carbon from chlorella vulgaris for energy storage devices vol.529, 2017, https://doi.org/10.1016/j.colsurfa.2017.05.051
  3. Studies on the correlation between nanostructure and pore development of polymeric precursor-based activated hard carbons: II. Transmission electron microscopy and Raman spectroscopy studies vol.54, 2017, https://doi.org/10.1016/j.jiec.2017.06.007
  4. Bivariant mechanical tuning of porous carbon electrodes for high-power and high-energy supercapacitors vol.52, pp.6, 2016, https://doi.org/10.3103/S1068375516060077
  5. Plasma Treated Active Carbon for Capacitive Deionization of Saline Water vol.2017, 2017, https://doi.org/10.1155/2017/1934724