DOI QR코드

DOI QR Code

Investigations of Ferroelectric Polarization Switching in Potassium Nitrate Composite Films

  • Kumar, Neeraj (Department of Physics, Amity School of Engineering and Technology Amity University Rajasthan) ;
  • Nath, Rabinder (Ferroelectric Materials and Devices Research Lab, Department of Physics Indian Institute of Technology (IIT) Roorkee)
  • 투고 : 2013.10.18
  • 심사 : 2014.02.07
  • 발행 : 2014.04.25

초록

This article explains the experimental results of ferroelectric polarization switching (FPS) of potassium nitrate ($KNO_3$) with different polymers such as polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF) using simple melt-press techniques. To analyze the ferroelectric polarization switching in potassium nitrate ($KNO_3$) composite films at room temperature, we applied the Ishibashi and Takagi theory (based on Avrami model) to the switching current transient. To investigate the dimensionality of domain growth, the ferroelectric polarization switching current (FPS current) was observed from the square - wave bipolar signals across a resistance of $0.1k{\Omega}$ in series with the composite films. The existence of a switching current transient pulse confirmed the ferroelectricity and indicated the stability of the ferroelectric phase (phase III) of $KNO_3$ at room temperature. Polarization hysteresis (P-E) characteristics supported the prominent features of ferroelectric polarization switching in the composite films at room temperature.

키워드

참고문헌

  1. M.H.Francombe, Hand book of thin film devices, Vol.5, Ferroelectric Film Devices, edited by, D.J. Taylor (Academic Press, 2000).
  2. Hari Singh Nalwa, Hand book of thin film devices, Vol.3, Ferroelectric and Dielectric Thin Films., (Academic Press, 2002).
  3. M.E. Lines, and A.M. Glass, Principles and Applications of Ferroelectrics and Related Compounds, Clarendon Press, Oxford, 1977.
  4. M. Alexe and A. Gruverman, "Nanoscale Characterization of Ferroelectric Materials", Springer (Eds.) 2004.
  5. J.F. Scott, "The Physics of Ferroelectric Ceramic Thin Films for Memory Applications," Ferroelectric Rev., Vol. 1, pp. 1-129, (1998) [DOI: http://dx.doi.org/10.1080/10584589808202046].
  6. J.F.Scott, Ferroelectric memories, Springer-Verlag Berlin Heidelberg, Germany, (2000) [DOI: http://dx.doi.org/10.1007/978-3-662-04307-3].
  7. N. Setter and D. Damjanovic, J. Appl. Phys., 100, 051606 (2006) [DOI: http://dx.doi.org/10.1063/1.2336999].
  8. S.B. Krupanidhi and L.E.Cross, IEEE Trans. Ultrasonics Ferroelectrics and Frequency Control, 38, 644 (1991).
  9. S. Sawada, S. Nomura, and S. Fujii, J. Phys. Soc. Japan. 13, 1549 (1958) [DOI: http://dx.doi.org/10.1143/JPSJ.13.1549].
  10. J.P. Nolta and N.W. Schubring, Phys. Rev. Lett. 9, 285 (1962) [DOI: http://dx.doi.org/10.1103/PhysRevLett.9.285].
  11. J. P. Nolta, N. W. Schubring, and R. A. Dork, J. Chem. Phys. 42, 508 (1965) [DOI: http://dx.doi.org/10.1063/1.1695964].
  12. S. Sawada, S. Nomura, and Y. Asao, J. Phys. Soc. Japan. 16, (1961).
  13. S. Swaminathan and S. Srinivasan, Acta Cryst. A 31, 628 (1975) [DOI: http://dx.doi.org/10.1107/S0567739475001350].
  14. M.H. Francombe, Thin Solid Films. 13, 413 (1972) [DOI: http://dx.doi.org/10.1016/0040-6090(72)90314-8].
  15. T. Yangi, J. Phys. Soc. Japan. 20, 1351 (1965) [DOI: http://dx.doi.org/10.1143/JPSJ.20.1351].
  16. W.J. Schaffer and D.E., Mikkola. J. Appl. Phys., 64, 2563 (1988) [DOI: http://dx.doi.org/10.1063/1.341643].
  17. K.R. Rao, S.L. Chaplot, P.K. Iyengar, A.H. Venkatesh and P.R. Vijayaraghavan, Pramana, 11, 288 (1978) [DOI: http://dx.doi.org/10.1007/BF02848189].
  18. O. Dieguez and D. Vanderbilt, Phys. Rev B, 76, 134101 (2007) [DOI: http://dx.doi.org/10.1103/PhysRevB.76.134101].
  19. H.M. Duiker, P.D. Beale, J.F. Scott, C.A. Paz de Araujo, B.M. Melnick, J.D. Cuchiaro and L.D. McMillan, J.Appl. Phys. 63, 5783 (1990) [DOI: http://dx.doi.org/10.1063/1.346948].
  20. J.F. Scott, L. Kammerdiner, M. Parris, S. Traynor, V. Ottenbacher, A. Shawabkeh and W.F. Oliver, J. Appl. Phys. 64, 787 (1988) [DOI: http://dx.doi.org/10.1063/1.341925].
  21. C.A. Paz de Araujo, L.D. McMillan, B. M. Melnick, J.D. Cuchiaro, and J.F. Scott, Ferroelectrics 104, 241 (1990) [DOI: http://dx.doi.org/10.1080/00150199008223827].
  22. G.Rohrer, S. Narayan, L. McMillan, and A. Kulkarni, J. Vac. Sci. Technol. A 6 1756 (1988) [DOI: http://dx.doi.org/10.1116/1.575287].
  23. P.Sajkiewicz., J. Poly. Science:Part B Poly Phy, 41 (2003).
  24. L.Priya and J.P. Jog, J. Polymer Sci: Part B: Polymer Phys. 41, 31(2003) [DOI: http://dx.doi.org/10.1002/polb.10355].
  25. N. Kumar and R. Nath, IEEE Trans. Dielectr. Electr. Insul., 12, 1145 (2005) [DOI: http://dx.doi.org/10.1109/TDEI.2005.1561794].
  26. T. Yamada, T. Ueda and T. Kitayama, J. Appl. Phys. 53, 4328 (1982) [DOI: http://dx.doi.org/10.1063/1.331211].
  27. M.J. Abdullah and D.K.Das-Gupta, IEEE Trans. Electr. Insul. 25, 605 (1990) [DOI: http://dx.doi.org/10.1109/14.55739].
  28. C.J. Dias and D.K.Das-Gupta, J. Appl. Phys. 74, 6317(1993) [DOI: http://dx.doi.org/10.1063/1.355153].
  29. C. Dias, D.K. Das-Gupta, Y. Hinton and R.J. Shuford, Sensors an Actuators. A 37-38, 343 (1993) [DOI: http://dx.doi.org/10.1016/0924-4247(93)80058-O].
  30. Hsing-I. Hsiang and Fu-Su Yen. Jpn. J. Appl. Phys. 33, 3991 (1994) [DOI: http://dx.doi.org/10.1143/JJAP.33.3991].
  31. V. Bobnar, B. Vodopivec, Z. Kutnjak, M. Kosec, A. Levstik and B. Hilczer, Ferroelectrics, 304, 3 (2004) [DOI: http://dx.doi.org/10.1080/00150190490454242].
  32. H. Zewdie and F. Brouers, J. Appl. Phys. 68, 713 (1990) [DOI: http://dx.doi.org/10.1063/1.346803].
  33. I. Vrejoiu, J.D. Pedarnig, M. Dinescu, S. Bauer-Gogonea, and D. Bauerle, Appl. Phys. A, 74, 407 (2002) [DOI: http://dx.doi.org/10.1007/s003390101137].
  34. C.J. Dias, R. Igreja, R. Marat-Mendes, P. Inacio, J.N. Marat-Mendas and D.K. Das-Gupta, IEEE Trans. Dielectr. Electr. Insul. 11, 35 (2004) [DOI: http://dx.doi.org/10.1109/TDEI.2004.1266314].
  35. M. Olszowy, Cond. Matt. Phys. 6, 307 (2003). https://doi.org/10.5488/CMP.6.2.307
  36. Pablo Marin - Franch, Devid L. Tunnicliffe and D.K. Das-Gupta, Mat. Res. Innovat., 4, 334 (2001) [DOI: http://dx.doi.org/10.1007/s100190000118].
  37. B. Hilczer, Jan Kulek, E. Markiewicz and M.Kosec, Ferroelectrics. 293, 253 (2003) [DOI: http://dx.doi.org/10.1080/759104961].
  38. C.K.Chiang and R. Popielarz, Ferroelectrics. 275, 1 (2002) [DOI: http://dx.doi.org/10.1080/00150190214285].
  39. R. Guo, A.S. Bhalla, C.A. Randall, Z. P. Chang, and L.E. Cross, J. Appl. Phys., Vol. 67, pp. 1453-1460 (1990) [DOI: http://dx.doi.org/10.1063/1.345651].
  40. R.Popielarz, C.K. Chiang, R. Nozaki, and J. Obrzut, "Dielectric Properties of Polymer/Ferroelectric ceramic Composites from 100 Hz to 10 GHz", Macromolecules, Vol. 34, pp. 5910-5915 (2001) [DOI: http://dx.doi.org/10.1021/ma001576b].
  41. Kenji Uchino, Ferroelectric Devices Marcel Dekker, Inc. New York, 2000 (Printed in the USA).
  42. K.C. Sekhar and R. Nath,.J. Appl. Phys., 102, 044114 (2007) [DOI: http://dx.doi.org/10.1063/1.2772599].
  43. G. Andrew Rohrer,U.S. Patent No. 3939292 (1980).
  44. K. Matyjasek, J. Phys. D: Appl. Phys., Vol. 34, pp. 2211-2219 (2001) [DOI: http://dx.doi.org/10.1088/0022-3727/34/14/317].
  45. N. Kumar and R. Nath : J.Phys.D: Appl. Phys. 36, 1308 (2003) [DOI: http://dx.doi.org/10.1088/0022-3727/36/11/311].
  46. N. Kumar and R. Nath, J. Appl. Phys.,97, 024105(2005) [DOI: http://dx.doi.org/10.1063/1.1821642].
  47. Y. Ishibashi and Y. Takagi, J. Phys. Soc. Japan, 31, 506 (1971) [DOI: http://dx.doi.org/10.1143/JPSJ.31.506].