DOI QR코드

DOI QR Code

Improved Regioselective Di-nitration of Biphenyl over Reusable HBEA-500 Zeolite

  • Tai, Yan F. (School of Chemical Engineering, Hefei University of Technology) ;
  • Ji, Cheng (School of Chemical Engineering, Hefei University of Technology) ;
  • Shi, Chun J. (School of Applied Chemistry and Environmental Engineering, Bengbu College) ;
  • Wang, Wei (School of Chemical Engineering, Hefei University of Technology) ;
  • Peng, Xin H. (School of Chemical Engineering, Hefei University of Technology)
  • Received : 2013.09.17
  • Accepted : 2013.12.29
  • Published : 2014.04.20

Abstract

Keywords

Experimental

General Procedure of Nitration. All reactions were carried out in a 50 mL one-necked round bottomed flask equipped with a water condenser and a magnetic stirrer. In a typical experiment, a mixture of zeolite HBEA-500 (0.30 g) which was calcined at 550 °C for 2 h in air prior to use, biphenyl (0.61 g, 4 mmol), nitric acid (95%, 0.35 mL, 8 mmol) was stirred in acetic anhydride (5.0 mL) at −5 °C for 24 h. When the reaction was over, 10 mL of dichloro-methane was added, then the zeolites was removed by filtration and the filtrate was washed with water (3 × 10 mL) and 5% aqueous solution of NaHCO3 (10 mL) and water (3 × 10 mL). The organic phase separated was dried with anhydrous sodium sulfate, and filtrated to give a straw yellow liquid. The isomer distribution and yields of products were estimated from the peak areas based on the internal standard technique using gas chromatography. The straw yellow products with further purification by column chromato-graphy, and were identified by comparison of their analytical data with those of authentic samples.

Catalyst Regeneration. The used zeolite was recovered from the reaction mixture by filtration and washed with dichloromethane. The catalyst was dried at 110 °C for 4 h in the oven and ground into powder, then, calcined at 550 °C for 6 h.

1H-NMR of Nitrated Products: 2-Nitrobiphenyl yellow oil 1H NMR (400 MHz, CDCl3) δ 7.8 (d, 1H), 7.6 (d, 1H), 7.5 (m, 1H), 7.4 (m, 4H), 7.3 (m, 2H).

4-Nitrobiphenyl White Solid: 1H NMR (400 MHz, CDCl3) δ 8.3 (m, 2H), 7.7 (m, 2H), 7.6 (d, 2H), 7.5 (d, 2H), 7.4 (d, 1H).

2,2'-Dinitrobiphenyl Yellow Solid: 1H NMR (400 MHz, CDCl3) δ 8.3 (d, 2H), 7.7 (t, 2H), 7.6 (t, 2H), 7.3 (d, 2H).

2,4'-Dinitrobiphenyl Yellow Solid: 1H NMR (400 MHz, CDCl3) δ 8.2 (d, 2H), 8.0 (d, 1H), 7.7 (t, 1H), 7.6 (t, 1H), 7.5 (d, 2H), 7.4 (d, 1H).

4,4'-Dinitrobiphenyl Yellow Solid: 1H NMR (400 MHz, CDCl3) δ 8.4 (d, 4H), 7.7 (d, 4H).

References

  1. Taylor, R. Electrophilic Aromatic Substitution; Wiley: Chichester, 1990.
  2. Olah, G. A.; Malhotra, R.; Narang, S. C. Nitration: Methods and Mechanisms; VCH: New York, 1989.
  3. Schofield, K. Aromatic Nitration; University Press: Cambridge, 1980.
  4. Chaubal, N. S.; Sawant, M. R. Cata. Commun. 2007, 8, 845. https://doi.org/10.1016/j.catcom.2006.08.031
  5. Samajdar, S.; Becker, F. F.; Banik, B. B. Tetrahedron Lett. 2000, 41, 8017. https://doi.org/10.1016/S0040-4039(00)01397-6
  6. Tasneem; Ali, M. M.; Rajanna, K. C.; Saiparakas, P. K. Synth. Commun. 2001, 31, 1123. https://doi.org/10.1081/SCC-100103545
  7. Qiao, K.; Hagiwara, H.; Yokoyama, C. J. Mol. Catal. A: Chemical. 2006, 246, 65. https://doi.org/10.1016/j.molcata.2005.07.031
  8. Mao, W.; Ma, H.; Wang, B. J. Hazard. Mater. 2009, 167, 707. https://doi.org/10.1016/j.jhazmat.2009.01.045
  9. Billing, C. J.; Norman, R. O. C. J. Chem. Soc. 1961, 3885. https://doi.org/10.1039/jr9610003885
  10. Taylor, R. J. Chem. Soc. 1966, 727. https://doi.org/10.1039/j19660000727
  11. Waller, F. J.; Barret, A. G. M.; Braddock, D. C.; Ramprasad, D. Chem. Commun. 1997, 613.
  12. Smith, K.; Musson, A.; DeBoos, G. A. J. Org. Chem. 1998, 63, 8448. https://doi.org/10.1021/jo981557o
  13. Muathen, H. A. Molecules 2003, 8, 59.
  14. Zolfigol, M. A.; Mirjalili, B. F.; Bamoniri, A. Bull. Korean Chem. Soc. 2004, 25, 1414. https://doi.org/10.5012/bkcs.2004.25.9.1414
  15. Yuan,Y. B.; Nie, J.; Zhang, Z. B. Appl. Catal. A: General. 2005, 295, 170. https://doi.org/10.1016/j.apcata.2005.08.014
  16. Mascal, M.; Yin, L. X.; Edwards, R. J. Org. Chem. 2008, 73, 6148. https://doi.org/10.1021/jo800839f
  17. Javad Kalbasi, R.; Massah, A. R.; Zamani, F.; Javaherian Naghash, H. Chin. J. Chem. 2010, 28, 397. https://doi.org/10.1002/cjoc.201090086
  18. Peng, X.; Suzuki, H.; Lu, C. Tetrahedron Lett. 2001, 42, 4357. https://doi.org/10.1016/S0040-4039(01)00750-X
  19. Peng, X.; Naoyuki, F.; Masayuki, Suzuki, M. H. Org. Biomol. Chem. 2003, 1, 2326. https://doi.org/10.1039/b301847d
  20. Peng, X.; Suzuki, H. Org. Lett. 2001, 22, 3431.
  21. Tai, Y. F.; Peng, X. H.; Shi, C. J.; Dong, X. Z. Res. Chem. Intermed. DOI 10.1007/s11164-013-1238-5.
  22. Kwok, T. J.; Jayasuriya, K. J. Org. Chem. 1994, 59, 4939. https://doi.org/10.1021/jo00096a042
  23. Sengupta, S. K.; Schultz, J. A.; Walck, K. R.; Corbin, D. R.; Ritter, J. C. Top. Catal. 2012, 55, 601. https://doi.org/10.1007/s11244-012-9837-8

Cited by

  1. Regioselective mononitration of biphenyl by use of stoichiometric quantities of nitrogen dioxide and molecular oxygen over rare earth cation-exchanged β-zeolite catalysts vol.41, pp.12, 2015, https://doi.org/10.1007/s11164-015-1954-0
  2. ChemInform Abstract: Improved Regioselective Di-Nitration of Biphenyl over Reusable HBEA-500 Zeolite. vol.45, pp.37, 2014, https://doi.org/10.1002/chin.201437071
  3. The application of nitrogen oxides in industrial preparations of nitro compounds vol.96, pp.10, 2018, https://doi.org/10.1002/cjce.23246
  4. Facile and Efficient Nitration of 4‐Aryl‐1( 2H )‐Phthalazinone Derivatives Using Different Catalysts vol.6, pp.41, 2014, https://doi.org/10.1002/slct.202102057