Notes

Synthesis and Characterization of New Nickel Phosphates, ANi₄(PO₄)₃ (A=K, Rb)

Yoonmi Im, Pilsoo Kim, and Hoseop Yun*

Division of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 443-749, Korea *E-mail: hsyun@ajou.ac.kr Received December 4, 2013, Accepted December 20, 2013

Key Words : Metal phosphate, Crystal structure, Framework structure, UV/Vis spectroscopy, Bond valence calculations

Quaternary nickel orthophosphates, $ANi_4(PO_4)_3$ (A=Alkali metals) have been extensively investigated because they show interesting properties such as ionic conductivities, optical, and magnetic behaviors.¹⁻⁹ They are built up from NiO₆ octahedra and PO₄ tetrahedra. These basic building blocks are connected *via* common oxygen atoms to form the three-dimensional frameworks and the alkali metal ions reside in the empty space.

For NaNi₄(PO₄)₃, two different structures have been reported and this can be caused by the different reaction conditions. While NaNi₄(PO₄)₃ prepared as single crystals with the use of NaCl flux at 1373 K crystallizes in the space group Amam and show a partial disorder of one of the PO₄ tetrahedra,³ NaNi₄(PO₄)₃ and KNi₄(PO₄)₃ synthesized with alkali metal nitrate at 1073 K as powders adopt an ordered structure with the space group *Pmm.*⁴ As far as we know, no structural studies of KNi₄(PO₄)₃ from single crystal diffraction data have been reported yet and RbNi₄(PO₄)₃ is a new compound. In this paper we report on the synthesis and structural investigations using single crystals of two nickel orthophosphates, KNi₄(PO₄)₃ and RbNi₄(PO₄)₃.

Experimental

Synthesis.

KNi₄(PO₄)₃: KNi₄(PO₄)₃ was prepared by the reaction of elements with the use of the reactive halide-flux technique. A combination of the pure elements, Ni powder (Alfa Aesar 99.8%), S powder(Sigma-Aldrich) and P powder (Sigma-Aldrich 99%) were mixed in a fused silica tube in molar ratio of Ni:P:S=4:5:6 and then KCl (Alfa Aesar 99%) was added. The mass ratio of the reactants and the halide was 1:3. The tube was evacuated to 0.133 Pa, sealed, and heated gradually (30 K/h) to 1023 K, where it was kept for 72 h. The tube was cooled to room temperature at the rate of 6 K/h.

RbNi₄(**PO**₄)₃: RbNi₄(PO₄)₃ was prepared by the reaction of elements with the use of the reactive halide-flux technique. A combination of the pure elements, Ni powder (Alfa Aesar 99.8%), Se powder (Sigma-Aldrich) and P powder (Sigma-Aldrich 99%) were mixed in a fused silica tube in molar ratio of Ni:P:Se=3:4:8 and then RbCl (Alfa Aesar 99%) was added. The mass ratio of the reactants and the halide was 1:2. The tube was evacuated to 0.133 Pa, sealed, and heated gradually (20 K/h) to 923 K, where it was kept

for 72 h. The tube was cooled to room temperature at the rate of 12 K/h.

In both cases, the excess halide was removed with distilled water and yellow needle-shaped crystals were obtained. The role of chalcogens in the reactions is not clear but it is helpful to obtain the product as single crystals. The crystals are stable in air and water. A qualitative X-ray fluorescence analysis of the crystals indicated the presence of K or Rb, Ni, and P. The compositions of the compounds were determined by single-crystal X-ray diffraction.

Crystallographic Studies. The structures of ANi₄(PO₄)₃ (A=K, Rb) were determined by single crystal X-ray diffraction methods. Preliminary examination and data collection were performed with Mo K α_1 radiation ($\lambda = 0.71073$ Å) on a RIGAKU R-ASXIS RAPID diffractometer. The cell constants and an orientation matrix were determined from least-squares, using the setting angles in the range $3.0^{\circ} < \theta < 27.5^{\circ}$. The crystallographic details are described in Table 1. Intensity data were collected with the ω scan technique.

The intensity statistics and systematic absences are consistent with the orthorhombic space group, *Pmm.* The initial positions for all atoms were obtained by using direct methods of the SHELXS-86 program.¹⁰ The structure was refined by full-matrix least-squares techniques with the use of the SHELXL-97 program.¹⁰ The data for ANi₄(PO₄)₃ (A=K, Rb) were corrected for absorption using the multi-scan method.¹¹ In case of KNi₄(PO₄)₃, the final cycle of refinement performed on F_0^2 with 1183 unique reflections afforded residuals wR2 = 0.059 and the conventional R index based on the reflections having $F_0^2 > 2\sigma$ (F_0^2) is 0.024. For RbNi₄(PO₄)₃, the final cycle of refinement performed on F_0^2 with 1202 unique reflections afforded residuals wR2=0.091 and the conventional R index based on the reflections having $F_0^2 > 2\sigma$ (F_0^2) is 0.035.

A difference Fourier synthesis calculated with phases based on the final parameters shows no peak heights greater than 1.11 and 1.91 e/Å³. No unusual trends were found in the goodness of fit as a function of F_o , $\sin\theta/\lambda$ and Miller indices. Final values of the atomic coordinates and equivalent isotropic displacement parameters are given in Tables 2, 3. Anisotropic displacement parameters and complete tabulations on the X-ray studies can be found in CIF format in the Supporting Information Section.

Solid-State UV/Vis Spectroscopy. Optical diffuse reflec-

1226 Bull. Korean Chem. Soc. 2014, Vol. 35, No. 4

Table 1. Crystal data and structure refinement for ANi₄(PO₄)₃

	KNi ₄ (PO ₄) ₃	RbNi ₄ (PO ₄) ₃
Formula weight, amu	558.85	605.22
Space group	Pnnm	Pnnm
a, Å	9.4908 (3)	9.4837 (4)
b, Å	16.2378 (6)	16.3458 (6)
c, Å	6.1553 (2)	6.1846 (2)
V, Å ³	948.59 (6)	958.72(6)
Z	4	4
Т, К	290 (1)	290 (1)
Radiation	Graphite	Graphite
	Monochromated	Monochromated
	ΜοΚα	ΜοΚα
	$(\lambda = 0.71073 \text{ Å})$	$(\lambda = 0.71073 \text{ Å})$
Linear absorption		
coefficient, mm ⁻¹	8.83	13.35
Crystal size, mm ³	$0.42 \times 0.10 \times 0.08$	$0.60 \times 0.08 \times 0.06$
Scan type	ω	ω
θ limits, deg.	$3.0^{\circ} < \theta < 27.5^{\circ}$	$3.0^{\circ} < \theta < 27.5^{\circ}$
Data collected	\pm h, \pm k, \pm l	\pm h, \pm k, \pm l
No. of unique data with		
$F_{o}^{2} > 0$	1183	1202
No. of unique data with		
$F_{o}^{2} > 2\sigma(F_{o}^{2})$	1117	1016
wR2 (all data)	0.059	0.091
R (on Fo for $F_o^2 > 2\sigma(F_o^2)$)	0.024	0.035
Goodness-of-fit on F ²	1.107	1.113
Min. and Max. residual		
Electron density (e/Å ³)	-0.96 and 1.11	-2.09 and 1.91

tance measurements of the powdered sample were performed at room temperature using a Shimadzu UV-2400 PC spectrophotometer operating in the range of 200-800 nm. BaSO₄ powder was used as reference material. The absorption data were calculated from the diffuse reflectance data

Table 2. Atomic coordinates, equivalent isotropic displacementparameters and bond valence sums (BVSs) for $KNi_4(PO_4)_3$

	Х	У	Z	Ueq [*]	BVS
Κ	0.2029(1)	0.4687(1)	0	0.0221(2)	1.1173
Ni1	0.0342(1)	0.9074(1)	0	0.0078(2)	1.9556
Ni2	0.5133 (1)	0.1426(1)	0	0.0084(2)	1.8734
Ni3	0.2521 (1)	0.2039(1)	0.2506 (1)	0.0078(2)	1.9246
P1	0.4604 (1)	0.3372(1)	0	0.0069(2)	4.9217
P2	0.0474(1)	0.2799(1)	0	0.0068(2)	4.9129
P3	0.2941(1)	0.0363(1)	0	0.0072(2)	4.9597
01	0.6228 (3)	0.3252(2)	0	0.0103(5)	1.9738
02	0.1145 (3)	0.7256(2)	0	0.0091(5)	2.0163
03	0.4124 (2)	0.3824(1)	0.2007 (3)	0.0114(4)	1.9503
O4	0.1098 (3)	0.1897(1)	0	0.0087(5)	2.1386
05	0.3886 (3)	0.2475 (2)	0	0.0087(5)	1.9833
06	0.6351 (3)	0.0459 (2)	0	0.0139(6)	1.9536
07	0.3402 (2)	0.0901(1)	0.1978 (3)	0.0106(4)	1.9268
08	0.1069 (2)	0.3178 (1)	0.2085 (3)	0.0113(4)	1.8826
09	0.1344 (3)	0.0201 (2)	0	0.0120(6)	2.0046

Table 3. Atomic coordinates, equivalent isotropic displacement parameters and bond valence sums (BVSs) for $RbNi_4(PO_4)_3$

	х	У	Z	Ueq ^a	BVS
Rb1	0.1963(1)	0.4690(1)	0	0.0248(3)	1.2589
Ni1	0.0327(1)	0.9075(1)	0	0.0088(2)	1.9183
Ni2	0.5146(2)	0.1431(1)	0	0.0094(2)	1.8412
Ni3	0.2536(1)	0.2044(1)	0.2503(1)	0.0082(2)	1.9221
P1	0.4623(2)	0.3371(1)	0	0.0065(4)	4.9269
P2	0.0481(2)	0.2787(1)	0	0.0071(4)	4.9302
P3	0.2956(2)	0.0371(1)	0	0.0082(4)	4.9211
01	0.6254(5)	0.3245(3)	0	0.010(1)	1.9520
02	0.1134(5)	0.7263(3)	0	0.011(1)	2.0211
O3	0.4162(4)	0.3813(2)	0.2007(6)	0.0125(8)	1.9654
O4	0.1111(5)	0.1892(3)	0	0.009(1)	2.1294
05	0.3895(5)	0.2480(3)	0	0.008(1)	1.9636
06	0.6332(6)	0.0447(3)	0	0.0150(1)	1.9573
07	0.3420(4)	0.0913(2)	0.1959(6)	0.0107(8)	1.9531
08	0.1079(4)	0.3155(2)	0.2084(6)	0.0104(7)	1.8988
09	0.1359(5)	0.0199(3)	0	0.0120(1)	1.9819

^aUeq is defined as one third of the trace of the orthogonalized Uij tensor.

with the use of the Kubelka-Munk relation.¹²

Result and Discussion

Crystal Structure. The structural studies of ANi₄(PO₄)₃ (A=K, Rb) demonstrate the existence of another members of the AM4(PO4)3 family (A=Alkali metal, M=Co, Fe, Mg, Mn, Ni).¹⁻⁹ Selected bond distances and angles can be found in Table 4 and the Supporting Information Section, respectively. The title compounds are isostructural with AM₄(PO₄)₃ and the detailed descriptions of this structural type have been given previously.¹⁻⁹ A view down the a-axis, given in Figure 1 shows the three-dimensional framework structure and tunnels, where the alkali metal cations are located. There are three crystallographically independent Ni atoms and two types of Ni coordination are found in this structure (Figure 2). The Ni1 is coordinated by five O atoms in a trigonal bipyramidal fashion and the Ni2 and Ni3 are surrounded by six O atoms in the distorted octahedral symmetry. The P atom is coordinated to four O atoms to form the regular tetrahedron. Ni3O₆ octahedra form a one-dimensional chain along the c-axis by sharing edges and these chains are linked via Ni2O₆ octahedra to form the two-dimensional layer parallel to the ac plane. The edge-sharing trigonal bipyramidal Ni1O₅ acts as a bridge to connect the layers and finally the tetrahedral PO₄ link the Ni polyhedra to complete the threedimensional framework, $\frac{3}{2}$ [Ni₄(PO₄)₃]⁻. As a result, an empty hexagonal channel along the a-axis is formed. The free diameters of the channels are about 4.8 Å, which is similar to that of NaNi₄(PO₄)₃. The alkali metal cations, K^+ or Rb^+ reside in this channel through the electrostatic Coulombic interaction.

The Ni-O distances ranging from 1.949(3) to 2.320(2) Å are consistent with the sum of the ionic radii of each ions¹³ except the Ni2-O7 and Ni3-O8. The P-O distances ranging

Notes

KNi ₄ (PO ₄) ₃		RbNi ₄ (PO ₄) ₃	
Ni1—03	1.953 (2) × 2	Ni1-03	1.961 (4) × 2
Ni1-04	2.086 (3)	Nil—O4	2.087 (5)
Ni1—09	1.986 (3), 2.063 (3)) Ni1—O9	1.991 (5), 2.082 (5)
Ni2—05	2.075 (3)	Ni2—05	2.085 (5)
Ni2—06	1.949 (3)	Ni2—06	1.962 (5)
Ni2-07	$2.216(2) \times 2$	Ni2—07	2.204 (4) × 2
Ni2—08	$2.103(2) \times 2$	Ni2—08	2.120 (4) × 2
Ni3—01	2.021 (2)	Ni3—O1	2.021 (3)
Ni3—O2	2.021 (2)	Ni3—O2	2.026 (3)
Ni3—04	2.063 (2)	Ni3—04	2.069 (3)
Ni3—05	2.136 (2)	Ni3—O5	2.137 (3)
Ni3—07	2.055 (2)	Ni3—07	2.057 (3)
Ni3—08	2.320 (2)	Ni3—08	2.297 (4)
P101	1.553 (3)	P101	1.561 (5)
P103	1.508 (2)	P1—O3	1.502 (4) × 2
P105	1.607 (3)	P105	1.496(3)
Р2—О2	1.539 (3)	P2—O2	1.534 (5)
P2—O4	1.581 (3)	P2—O4	1.580 (5)
P2—O8	1.531 (2) × 2	P2—O8	1.531 (4) × 2
Р3—Об	1.496 (3)	Р3—Об	1.498 (5)
Р3—О7	1.561(2) × 2	Р3—О7	1.565 (4) × 2
Р3—О9	1.538 (3)	Р3—О9	1.540 (5)

Table 4. Bond lengths [Å] for ANi₄(PO₄)₃

from 1.496(3) to 1.607(3) Å appear to be typical for the PO₄ tetrahedra.¹⁴ According to the bond valence calculations,¹⁵ the global instability indices, Gii for KNi₄(PO₄)₃ and RbNi₄(PO₄)₃ are 0.0779 and 0.0994 v.u, respectively, which are typical of the unstrained structures.¹⁶ The charge balance of the title compounds can be described by $[A^+]$ $[Ni^{2+}]_4$ - $[P^{5+}]_3[O^{2-}]_{12}$.

Solid-State UV/Vis Spectroscopy. UV/Vis absorption spectral data show that absorption peaks of crystal field splittings of the Ni^{2+} ions are around 2.78 eV for KNi₄(PO₄)₃

Figure 1. View of $ANi_4(PO_4)_3$ down the a-axis showing the structure of the framework. Alkali metals, Ni, P, and O atoms are represented by green, blue, turquoise, and red spheres, respectively with arbitrary radii; NiO₅, NiO₆ polyhedra are drawn in sky blue and blue, respectively. PO₄ tetrahedra are drawn in pink.

Figure 2. Basic polyhedral units around Ni atoms. Atom color codes as in Figure 1. (a) $Ni1O_5$ trigonal bipyramid (b) $Ni2O_6$ and $Ni3O_6$ octahedra.

Figure 3. Solid-state UV/Vis absorption spectra of KNi₄(PO₄)₃.

and 2.68 eV for RbNi₄(PO₄)₃. Usually Ni²⁺ ions with octahedral coordinations with oxygen atoms show greenish colors. According to the investigation by Rossman *et al.*, bright yellow oxides containing Ni²⁺ ions are found when the Ni²⁺ ions enter sites significantly deviated from the regular octahedral symmetry.¹⁷ Therefore, we believe that the electronic transitions localized mainly on the distorted Ni polyhedra are responsible for the colors observed in the title compounds.

Acknowledgments. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant No. 2011-0011309).

Supporting Information. Crystallographic data for the structures reported here have been deposited with FIZ (Deposition No. CSD-427036 and CSD-427037 for $KNi_4(PO_4)_3$ and $RbNi_4(PO_4)_3$, respectively). These data can be obtained free of charge from FIZ, D-76344, Eggenstein-Leopoldshafen, Germany, E-mail: crysdata@fiz-karlsruhe.de).

References

- Daidouh, A.; Martinez, J. L.; Pico, C.; Veiga, M. L. J. Solid State Chem. 1999, 144, 169-174.
- Lopez, M. L.; Durio, C.; Daidouh, A.; Pico, C.; Veiga, M. L. Chem. Eur. J. 2004, 10, 1106-1113.
- Anderson, J. B.; Moring, J.; Kostiner, E. J. Solid State Chem. 1985, 60, 358-365.
- 4. Daidouh, A.; Pico, C.; Veiga, M. L. Solid State Ionics 1999, 124,

1228 Bull. Korean Chem. Soc. 2014, Vol. 35, No. 4

109-117.

- Tomaszewski, P. E.; Maczka, M.; Majchrowski, A.; Waœkowska, A.; Hanuza, J. J. Solid State Sci. 2005, 7, 1201-1208.
- Baies, R.; Pérez, O.; Caignaert, V.; Pralong, V.; Raveau, B. J. Mater. Chem. 2006, 16, 2434-2438.
- 7. Ben Amara, M.; Vlasse, M.; Olazcuaga, R.; Le Flem, G.; Hagenmuller, P. Acta Crystallogr. **1983**, C39, 936-939.
- Neeraj, S.; Noy, M. L.; Cheetham, A. K. Solid State Sci. 2002, 4, 397-404.
- López, M. L.; Daidouh, A.; Pico, C.; Rodríguez-Carvajal, J.; Veiga, M. L. Chem. Eur. J. 2008, 14(34), 10829-10838.
- 10. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.
- 11. Rigaku RAPID-AUTO Manual, Rigaku Corporation, Tokyo, Japan

2006.

- (a) Wendlandt, W. W.; Hecht, H. G. *Reflectance Spectroscopy*; Interscience Publishers: New York, 1966; (b) Kotüm, G. *Reflectance Spectroscopy*; Springer-Verlag: New York, 1969; (c) Tandon, S. P.; Gupta, J. P. *Phys. Status Solidi* **1970**, *38*, 363-367.
- 13. Shannon, R. D. Acta Crystallogr. 1976, A32, 751-767.
- 14. Kee, Y.; Lee, S.; Yun, H. Acta Crystallogr. 2011, E67(9), i49.
- 15. Adams, S. Acta Crystallogr. 2001, B57, 278-287.
- Adams, S.; Moretzkia, O.; Canadellb, E. Solid State Ionics. 2004, 168, 281-290.
- 17. Rossman, G. R.; Shannon, R. D.; Waring, R. K. J. Solid State Chem. 1981, 39, 277-287.

Notes