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Time-dependent formulations of the reactive scattering theory based on the wavepacket correlation functions

with the Møller wavepackets for the electronically nonadiabatic reactions are presented. The calculations of

state-to-state reactive probabilities for the quasi-Jahn-Teller scattering model system were performed. The

conical intersection (CI) effects are investigated by comparing the results of the two-surface nonadiabatic

calculations and the single surface adiabatic approximation. It was found that the results of the two-surface

nonadiabatic calculations show interesting features in the reaction probability due to the conical intersection.

Single surface adiabatic calculations with extended Born-Oppenheimer approximation using simple

wavepacket phase factor was found to be able to reproduce the CI effect semi-quantitatively, while the single

surface calculations with the usual adiabatic approximation cannot describe the scattering process for the Jahn-

Teller model correctly. 
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Introduction

 Reactive scattering studies have been successful for 3-

and 4-atom bimolecular reactions.1,2 These studies were

based on a single electronically adiabatic PES potential energy

surface (PES) obtained a priori using the Born-Oppenheimer

approximation. Time-dependent methods possess some attractive

features for large-scale numerical calculations, which has

been used for the possible extension of scattering studies to

reactions involving polyatomic molecules.2,3 It has also been

recognized that the time-dependent wavepacket approach

can provide direct information on the underlying reaction

dynamics. Additionally, time-dependent studies can be used

to develop approximate theories such as semiclassical, mixed

quantum/classical, or time-dependent self-consistent-field

(TDSCF) methods.

Reactions can occur on multiple electronic states, which

require the inclusion of nonadiabatic effects. However,

theoretical studies of reaction dynamics on multiple PESs

have been rather limited. Only a few quantum mechanical

scattering studies have been attempted so far.4-6 Even for low

enough energies such that upper electronic states cannot be

populated, the presence of electronic degeneracy has been

found to affect molecular dynamics including scattering

processes.7,8 In order to reveal much richer dynamical phen-

omena, one needs time-dependent studies on general reac-

tive scattering processes involving multiple electronic states.

Nonadiabatic processes are ubiquitous in reactions involv-

ing polyatomic molecules.9,10 The conical interaction (CI)

between Born-Oppenheimer potential energy surfaces is an

important example of such nonadiabatic effect,11,12 as demon-

strated by Herzberg and Longuet-Higgins.13,14 The possible

effects of CI on scattering processes have been extensively

studied.7,15,16 For systems with three identical atoms, the

Jahn-Teller (JT) effect is the most well-known phenomena.14,17

Baer et al. extended the Jahn-Teller model, which was

originally devised for bound systems, to a scattering pro-

cess.18 Using a simple two-dimensional quasi-JT model, the

effect on the symmetry of the nuclear wavefunctions due to

CI was examined by time-dependent scattering calculations.

Adhikari and Billing addressed the same problem using the

same model with a time-dependent wavepacket approach.19 

In this paper we present an extension of the wavepacket

correlation function formulation with the Møller operator to

the scattering in the quasi-Jahn-Teller model system. The

purpose of the present study is to illustrate the application of

a time-dependent approach to electronically nonadiabatic

reactions. In order to obtain the state-to-state reaction

probability, we used the correlation function formulations

developed by Tannor and coworkers.20-26 A time-dependent

reactive scattering formulation in which the individual S-

matrix elements or the cumulative reaction probabilities

were obtained from time-correlation functions between reac-

tant and product wave packets with appropriate boundary

conditions. Similar formulations based on time-dependent

wavepackets have also been introduced by others.27,28 Recent-

ly, we proposed a simple extension of the wavepacket

correlation function formulation to electronically nonadia-

batic reactions, which was applied to simple model reac-

tions.29

Theory and Model

Adiabatic and Diabatic Representations. The relation

between the adiabatic and diabatic representations is well

known. The detailed descriptions of the adiabatic and diabatic

representations in scattering problems are given in previous

works.8,30 Here, we briefly summarize relevant relations.
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In the adiabatic representation, the equation for nuclear

wavefunction χ given in the form:

 (1)

For two-surface case, Eq. (1) is given by simple matrix

form as

(2)

The adiabatic representation can be transformed into the

diabatic representation where the nuclear wavefunction

satisfies the following equation:

(3)

with 

,  (4a)

and

. (4b)

where . 

The transformation matrix is given by

.  (5)

In two-dimensional problem, one can use either Cartesian

coordinates or polar coordinates. They are related by

 and  with . In this case,

the transformation angle α is given simply by  .

Correlation Function Formulation of S-matrix. S-matrix

elements can be defined by the overlap of the eigenfunctions

in the reactant and product regions of the scattering system:

. Here α and β are internal quantum

numbers of reactant and product channels, respectively. A lot

of studies have examined efficient methods for calculating S-

matrix elements. For example, one can calculate flux passing

through the dividing surface of the reaction coordinates.29

. (6)

Consider a wavepacket located at the asymptotic reactant

channel having a momentum of incoming direction initially

and propagated to the interaction scattering region. Then it is

propagated back to the asymptotic reactant channel or

moved to the asymptotic product channel at the final time.

The incoming and outgoing wavepackets can be represented

with its asymptotic eigenfunctions as basis:

, (7a)

.  (7b)

The formula of the scattering matrix elements  is

easily obtained as below:

, (8a)

, (8b)

.  (9)

Tannor and coworkers introduced the new formula of

scattering matrix elements, using Fourier transform of time

correlation function, which is equivalent with the following

flux-operation formula.9-15

. (10)

Calculation Details. At t = 0, one can use so-called “Møller

wavepacket” for  and . Initially it is set in the

interaction region of the system and propagated to its

asymptotic region without interaction potential, then it is

propagated back until t = 0 to the interaction region with full

potential. By using Møller wavepackets, one can reduce the

range of the coordinate and the number of grid points for

propagation because they are defined in the interaction

region. Since the free Hamiltonian H0 and full Hamiltonian

H are canceled out in the asymptotic channels, the length of

the asymptotic region can also be reduced. For the calculation of

h
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correlation function, wavepackets, after they pass through

fixed reference wavepacket, are propagated out until the

value of correlation function converges to zero. It is noted

that taking the reference wavepacket at the center of the

whole system is advantageous, effectively reducing ranges

of the asymptotic channels.

The correlation function in terms of the Møller operator is

written as follows:

(11)

where  and .

The correlation function now becomes:

(12)

We set initial incoming and outgoing wavepackets as

Møller wavepackets in the interaction region, which is equi-

valent to not canceling out the 2nd and 4th factors in Eq. (12),

which are  and  respectively. In the following, we

briefly describe a procedure to evaluate correlation function

based on the above scheme:

(a) We propagate initial incoming and outgoing wavepackets

in the interaction region at t = 0 to their asymptotic

regions under the free Hamiltonian.

(b) We prepare initial Møller wavepackets by applying the

2nd and 4th factors in Eq. (12), i.e., propagating the

wavepackets in (a) back to the time t = 0 under the full

Hamiltonian.

(c) For t > 0, correlation function is calculated by overlap

between outgoing wavepacket prepared in (b) and

incoming wavepacket propagated forward in time t.

(d) For t < 0, correlation function is calculated by overlap

between incoming wavepacket prepared in (b) and

outgoing wavepacket propagated backward in time t.

The terms of  and  can be derived from the

autocorrelation functions of  and , which can be

calculated by the similar procedure as the above.

Assuming that the free and full Hamiltonians in the pro-

pagator include two electronic states, the time-dependent

equation in adiabatic representation becomes

, (13)

the solution of this equation is given by

(14)

The time-evolutions of the corresponding diabatic wave-

packets can be done with split operator propagation in

multiple electronics states.18

Model Potential. The potential energy surfaces are adopted

from quasi-Jahn-Teller model with two degree of freedom.28

Two different potential energy surfaces are distinguished by

the vibration-coordinate symmetry of the ground potential

surface at the intersection region. They are called as reactive

double split model (RDSM) and reactive single split model

(RSSM). In the present work, we will consider the RDSM

model. The adiabatic potential energy surfaces are given by:

, (15a)

(15b)

where  and R and r are the trans-

lational and the vibrational coordinates, respectively. The

functions f(R, r) and g(R) for the RDSM model are:

, (16a)

(16b)

The corresponding diabatic potential energy surfaces are

obtained by the following equations:

, (17a)

, (17b)

(17c)

The same potential parameters as the previous work by

Baer and Kosloff28 are used in this work. The potential
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Figure 1. Contour plots for the adiabatic potential energy surfaces
of the reactive double split model (RDSM): (a) the excited state
and (b) the ground state. The parameters of the applied quasi-JT
model are A = 3.0 eV and D = 5.0 eV.
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surfaces of the RDSM model are shown in Figure 1.

Results and Discussion

The initial wavepackets are constructed by choosing a

Gaussian function in R and a vibrational eigenfunction in r

with the initial momentum corresponding to a given kinetic

energy. The parameters for the initial wavepackets and the

subsequent propagation are given in Table 1. First we set the

initial wavepacket in the ground adiabatic potential in the

center of the system at t = 0, and calculated the corresponding

Møller wavepackets. The initial diabatic wavepackets are

shown in Figure 2, while the Møller wavepackets  and

 are shown in Figure 3. It is noted that the two initial

diabatic wavepackets were defined in the reactant and product

regions, respectively, away from the conical intersection

point. The Møller wavepackets are different from the diabatic

wavepackets because the initial states spread through the CI

due to the propagation by the Møller operator.

By analyzing the adiabatic representation of the pro-

pagated Møller wavepacket as a function of time, one can

follow the dynamics of the system going from its asymptotic

reactant region, through the interaction region, moving to the

asymptotic product region. Considering the range of spatial

grids for the numerical calculations, the time scales for the

wavepacket propagation was set to be between −80 fs and 80

fs. The shape of ground adiabatic wavepacket obtained from

the propagated Møller wavepacket at the product asymptotic

region (t = 72 fs) is showed in Figure 4(a), while that at the

reactant asymptotic region is shown in Figure 4(b). The

diabatic wavepacket at its asymptotic past (t = −80 fs) is

illustrated in Fig. 4(c). The evolution of the populations of

adiabatic states is shown in Figure 5. The initial wavepacket

was set in the interaction region of the system, thus the

population was 0.5 for both the ground and excited states.

As we propagated the states, the population increased up to

0.9 for the ground state, meanwhile the population reduced

down to 0.1 for the excited state. Using the Møller operator,

the wavepacket (t = 0) was constructed by applying reactant

and product Møller operators  and s, and the

scattering dynamics were observed for relatively short range

in time.

In the previous time-independent and time-dependent

Φα

+

Φβ

–

Ωα

+ Ωβ

–

Table 1. Parameters used in numerical calculations

Coordinate Grid

Rmin, Rmax ± 0.2  nm rmin, rmax ± 0.1 nm

NR × Nr

Initial Wavepacket

(R0, r0) (0,0) nm  σR 0.05 nm

Kinetic enrgy 1.65 eV

Time Propagation

dt 1.0 au t ± 3300 au

(−80 fs → 80 fs)

Figure 2. Contour plots for the initial wavepackets Φα in diabatic
representation: (a) wavepacket for the product channel diabatic
potential energy surface and (b) wavepacket for the reactant
channel diabatic potential energy surface.

Figure 3. Contour plots of Møller wavepackets at t = 0 in the
ground adiabatic state: (a)  and (b) .Φα

+ Φβ

–



Wavepacket Correlation for Nonadiabatic Reactions  Bull. Korean Chem. Soc. 2014, Vol. 35, No. 4     1065

studies,18,19 the effects of symmetry of the vibrational states

were investigated with regard to the RDSM and the RSSM

models. For a Jahn-Teller model, a wavepacket near the

conical-intersection (CI) point is affected such that its spatial

phase is inverted, whose quantitative effects are dependent

on the symmetry of the system. The change in the spatial

phase of wavepacket for the RDSM model leads to the

corresponding changes in the state-to-state selection rule

such that only even-odd transitions are allowed while even-

even or odd-odd transitions were annihilated. The change of

spatial phase can be represented as an exponential term with

half of the spatial polar angle according to the extended BO

approximation. It was demonstrated that the results with

adiabatic wavepackets multiplied with the exponential phase

in the single adiabatic potential surface showed good agree-

ments with those of the two-surface diabatic calculations.

We obtained S-matrices of the system by different methods:

nonadiabatic calculation with double electronic surfaces;

adiabatic approximation with the wavepacket of changed

phase (extended Bohn-Oppenheimer scheme18); and adiabatic

approximation with the typical wavepacket (ordinary BO

scheme). The vibrational state of the reactant wavepacket

 was set to 0 and that of the product packet  to 0 or 1.

We calculated probabilities of 0 → 0 and 0 → 1 transitions.

Figure 6 showed the transition probabilities calculated by

three different methods: (a) two-surface nonadiabatic cal-

culations, (b) single surface calculations with the extended

BO approximation, and (c) single surface calculations with

the ordinary BO approximation. It is noted that time-

correlation functions based on the propagation of the Møller

wavepackets were used in the present calculations. Com-

pared with the previous study,29 the state-to-state reaction

probability with respect to the energy is found to be aver-

aged and the S-matrix elements for lower energies seemed to

be overestimated. However, a peak of the reaction prob-

ability around 2.2 to 2.4 eV for the 0 → 1 transition from

two-surface nonadiabatic calculations is consistent with the

Φα Φβ

Figure 4. Contour plots of the ground state adiabatic wavepacket
obtained from the propagated Møller wavepacket when t = 72 fs
(a) at the product asymptotic region and (b) at the reactant
asymptotic region. (c) A contour plot of the diabatic wavepacket at
its asymptotic past (t = −80 fs).

Figure 5. Populations of the ground (solid line) and the excited
(dashed line) adiabatic states during the propagation of the Møller
wavepacket. It is noted that t = 6400 au is defined to be the origin
of the time (t = 0). 

Figure 6. The state-to-state reaction probabilities, , calcu-
lated from (a) the two-surface nonadiabatic calculations, (b) the
single surface calculations with the extended BO approximation,
and (c) the single surface calculations with the ordinary BO
approximation for the 0 → 0 transition (solid line) and the 0 → 1
transition (dashed line).

Sβα

2
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previous results.18,19,29 Main focus of the present study is to

examine how salient features of nonadaibatic reactions can

be described by time-dependent approaches. The results

from the two-surface nonadiabatic calculations clearly show

the effects of CI on the selection rules of transition prob-

abilities, while the single surface adiabatic calculations lead

to erroneous results. In fact, the symmetry properties of the

transition probabilities for the single surface with the

ordinary BO approximation are completely reversed from

those for the two-surface nonadiabatic cases with CI.

Although the wavepackets were propagated on a single

surface, we observed that the main features of CI effects can

be recovered by implementing the extended BO approxi-

mation. The calculations showed that the 0-1 transition

probability is higher in the almost range of energy. However,

these results showed quantitative differences compared with

the exact two-surface calculations.

Concluding Remarks

We have extended a time-dependent formulation of quan-

tum mechanical scattering theory to reactions on multiple

electronic states. Wavepacket correlation function theory of

Tannor and coworkers was applied to electronically non-

adiabatic processes. It was shown that S-matrix can be

calculated with a correlation function using propagation of

Møller wavepackets of the system. We have applied the

method to a simple two-dimensional quasi-JT (Jahn-Teller)

model. It was found that the results of the two-surface non-

adiabatic calculations show interesting features in the reac-

tion probability due to the conical intersection. The single

surface adiabatic calculation with the extended BO approxi-

mation was found to be able to represent the CI effect semi-

quantitatively, while the single surface calculations with the

usual adiabatic approximation cannot describe the scattering

process for the Jahn-Teller model correctly.

It is shown that a straightforward extension of the wave-

packet correlation function method to electronically non-

adiabatic reactions can be constructed by the Møller formu-

lation of scattering. The time-dependent formulation of reac-

tive scattering theory can be cast into various forms in order

to provide an improved route to the evaluation of S-matrix

or cumulative reaction probabilities. Possible applications of

similar modifications to our time-dependent formulation for

handling reactions on multiple electronic states will be the

subject of future studies. Those efforts will include the use of

semiclassical wavepacket propagation and implementations

based on the ideas of quantum transition state theory.
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