References
- A. Shafir and S. L. Buchwald, Highly selective room-temperature copper-catalyzed C-N coupling reactions, J. Am. Chem. Soc., 128, 8742-8743 (2006). https://doi.org/10.1021/ja063063b
- G. Alvaro and D. Savoia, Addition of organometallic reagents to imines bearing stereogenic N-substituents. Stereochemical models explaining the 1,3-asymmetric induction, Synlett., 5, 651-673 (2002).
- M. Shi and Y. M. Xu, Catalytic, asymmetric Baylis-Hillman reaction of imines with methyl vinyl ketone and methyl acrylate, Angew. Chem. Int. Ed., 41, 4507-4510 (2002). https://doi.org/10.1002/1521-3773(20021202)41:23<4507::AID-ANIE4507>3.0.CO;2-I
- S. I. Murahashi, Synthetic aspects of metal-catalyzed oxidations of amines and related reactions, Angew. Chem. Int. Ed., 34, 2443-2465 (1995). https://doi.org/10.1002/anie.199524431
- S. Patai, The chemistry of the carbon-nitrogen double bond (Chemistry of functional goups), 61-147, Wiley-Interscience: New York, USA (1970).
- D. J. HadjipavlouLitina and A. A. Geronikaki, Anti-inflammatory activity of some novel 1-[3-(aroylo)] and one 1-[3-(aryloxy)]-propyl aminothiazole in correlation with structure and lipophilicity, Arzneimittel- Forsch., 46, 805-808 (1996).
- F. A. Carey and R. J. Sunderberg, Advanced organic chemistry, 5th ed., 1063-1069, Kluwer Academic/Plennum Publish: New York, USA (2001).
- G. C. Liu, D. A. Cogan, T. D. Owens, T. P. Tang, and J. A. Ellman, Synthesis of enantiomerically pure N-tert-butanesulfinyl imines (tertbutanesulfinimines) by the direct condensation of tert-butanesulfina mide with aldehydes and ketones, J. Org. Chem., 64, 1278-1284 (1-999). https://doi.org/10.1021/jo982059i
- S. Sithambaram, R. Kumar, Y. C. Son, and S. L. Suib, Tandem catalysis: Direct catalytic synthesis of imines from alcohols using manganese octahedral molecular sieves, J. Catal., 253, 269-277 (2008). https://doi.org/10.1016/j.jcat.2007.11.006
- S. I. Murahashi and D. Zhang, Ruthenium catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450, Chem. Soc. Rev., 37, 1490-1501 (2008). https://doi.org/10.1039/b706709g
- K. Yamaguchi and N. Mizuno, Efficient heterogeneous aerobic oxidation of amines by a supported ruthenium catalyst, Angew. Chem. Int. Ed., 42, 1480-1483 (2003). https://doi.org/10.1002/anie.200250779
- K. Mori, K. Yamaguchi, T. Mizugaki, K. Ebitani, and K. Kaneda, Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen, Chem. Commun., 5, 461-462 (2001).
-
S. Furukawa, A. Suga, and T. Komatsu, Highly efficient aerobic oxidation of various amines using
$Pd_3Pb$ intermetallic compounds as catalysts, Chem. Commun., 50, 3277-3280 (2014). https://doi.org/10.1039/c4cc00024b - K. N. T. Tseng, A. M. Rizzi, and N. K. Szymczak, Oxidant-free conversion of primary amines to nitriles, J. Am. Chem. Soc., 135, 16352-16355 (2013). https://doi.org/10.1021/ja409223a
- W. F. Wei, X. W. Cui, W. X. Chen, and D. G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev., 40, 1697-1721 (2011). https://doi.org/10.1039/c0cs00127a
-
L. J. Yuan, Z. C. Li, J. T. Sun, K. L. Khang, and Y. H. Zhou, Synthesis and characterization of activated
$MnO_2$ , Mater. Lett., 57, 1945-1948 (2003). https://doi.org/10.1016/S0167-577X(02)01109-6 -
X. B. Fu, J. Y. Feng, H. Wang, and K. M. Ng, Room temperature synthesis of a novel gamma-
$MnO_2$ hollow structure for aerobic oxidation of benzyl alcohol, Nanotechnology., 20, 375601 (2009). https://doi.org/10.1088/0957-4484/20/37/375601 - J. Yan, Z. J. Fan, T. Wei, Z. W. Qie, S. S. Wang, and M. L. Zhang, Preparation and electrochemical characteristics of manganese dioxide/ graphite nanoplatelet composites, Mater. Sci. Eng. B-Adv., 151, 174-178 (2008). https://doi.org/10.1016/j.mseb.2008.05.018
- X. C. Yu, C. Z. Liu, L. Jiang, and Q. Xu, Manganese dioxide catalyzed N-alkylation of sulfonamides and amines with alcohols under air, Org. Lett., 13, 6184-6187 (2011). https://doi.org/10.1021/ol202582c
- J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S. M. Lee, Y. M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J. G. Park, J. Kim, and T. Hyeon, Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts, Small., 4, 143-152 (2008). https://doi.org/10.1002/smll.200700456
-
A. V. Soldatova, C. Butterfield, O. F. Oyerinde, B. M. Tebo, and T. G. Spiro. Multicopper oxidase involvement in both Mn (II) and Mn (III) oxidation during bacterial formation of
$MnO_2$ , J. Biol. Inorg. Chem., 17, 1151-1158 (2012). https://doi.org/10.1007/s00775-012-0928-6 - J. Kim and S. S. Stahl, Cu/Nitroxyl-catalyzed aerobic oxidation of primary amines into nitriles at room temperature, ACS Catal., 3, 1652-1656 (2013). https://doi.org/10.1021/cs400360e
Cited by
- Methods of Nitriles Synthesis from Amines through Oxidative Dehydrogenation vol.362, pp.19, 2020, https://doi.org/10.1002/adsc.202000635