DOI QR코드

DOI QR Code

바이오플라스틱 생산 미생물 플랫폼 제작을 위한 대사공학 전략 개발

Development of Metabolic Engineering Strategies for Microbial Platform to Produce Bioplastics

  • Park, Si Jae (Department of Environmental Engineering and Energy, Myongji University) ;
  • David, Yokimiko (Department of Environmental Engineering and Energy, Myongji University) ;
  • Baylon, Mary Grace (Department of Environmental Engineering and Energy, Myongji University) ;
  • Hong, Soon Ho (Department of Chemical Engineering, University of Ulsan) ;
  • Oh, Young Hoon (Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Yang, Jung Eun (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST) ;
  • Choi, So Young (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST) ;
  • Lee, Seung Hwan (Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Lee, Sang Yup (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST)
  • 투고 : 2014.03.24
  • 발행 : 2014.04.10

초록

환경오염, 기후변화, 고갈되어가는 화석원료에 대한 문제를 해결하기 위해 재생가능한 자원으로부터 케미칼 및 고분자 등의 산업자원을 생산하는 친환경 공정개발에 많은 연구가 진행되고 있다. 최근에 재생가능한 바이오매스로부터 다양한 케미칼 및 고분자 등을 생산하는 바이오리파이너리 공정이 많은 관심을 받고 있으며, 석유화학기반산업을 보완 혹은 대체할 가능성이 매우 높은 친환경공정으로 생각되고 있다. 본 총설에서는 바이오리파이너리 공정에 핵심적인 촉매로 사용되고 있는 재조합 미생물의 개발의 최근 동향을 바이오나일론, 바이오폴리에스터의 생산을 위하여 개발되고 있는 재조합 미생물의 대사공학전략을 중심으로 살펴보고자 한다.

As the concerns about environmental problems, climate change and limited fossil resources increase, bio-based production of chemicals and polymers from renewable resources gains much attention as one of the promising solutions to deal with these problems. To solve these problems, much effort has been devoted to the development of sustainable process using renewable resources. Recently, many chemicals and polymers have been synthesized by biorefinery process and these bio-based chemicals and plastics have been suggested as strong candidates to substitute petroleum-based products. In this review, we discuss current advances on the development of metabolically engineered microorganisms for the efficient production of bio-based chemicals and polymers.

키워드

참고문헌

  1. The future of industrial biorefineries, World Economic Forum report (2010).
  2. J. W. Lee, D. Na, J. M. Park, J. Lee, S. Choi, and S. Y. Lee, Systems metabolic engineering of microorganisms for natural and non-natural chemicals, Nat. Chem. Biol., 8, 536-546 (2012). https://doi.org/10.1038/nchembio.970
  3. J. H. Park, S. Y. Lee, T. Y. Kim, and H. U. Kim, Application of systems biology for bioprocess development, Trends Biotechnol., 26, 404-412 (2008). https://doi.org/10.1016/j.tibtech.2008.05.001
  4. S. Atsumi and J. C. Liao, Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli, Appl. Environ. Microbiol., 74, 7802-7808 (2008). https://doi.org/10.1128/AEM.02046-08
  5. Y. S. Jang, J. Lee, A. Malaviya, D. Y. Seung, J. H. Cho, and S. Y. Lee, Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering, Biotechnol. J., 7, 186-198 (2012). https://doi.org/10.1002/biot.201100059
  6. Y. S. Jang, J. Y. Lee, J. Lee, J. H. Park, J. A. Im, M. H. Eom et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum, MBio., 3, 00314-12 (2012).
  7. K. Zhang, M. R. Sawaya, D. S. Eisenberg, and J. C. Liao, Expanding metabolism for biosynthesis of nonnatural alcohols, Proc. Natl. Acad. Sci. USA., 105, 20653-20658 (2008). https://doi.org/10.1073/pnas.0807157106
  8. Z. G. Qian, X. X. Xia, and S. Y. Lee, Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine, Biotechnol. Bioeng., 104, 651-662 (2009).
  9. Z. G. Qian, X. X. Xia, and S. Y. Lee, Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine, Biotechnol. Bioeng., 108, 93-103 (2011). https://doi.org/10.1002/bit.22918
  10. S. J. Park, E. Y. Kim, W. Noh, Y. H. Oh, H. Y. Kim, and B. K. Song, Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli, Bioprocess Biosyst. Eng., 36, 885-892 (2013). https://doi.org/10.1007/s00449-012-0821-2
  11. S. J. Park, E. Y. Kim, W. Noh, H. M. Park, Y. H. Oh, and S. H. Lee, Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals, Metab. Eng., 16, 42-47 (2013). https://doi.org/10.1016/j.ymben.2012.11.011
  12. H. Yim, R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, and J. Boldt, Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol, Nat. Chem. Biol., 7, 445-452 (2011). https://doi.org/10.1038/nchembio.580
  13. C. Rathnasingh, S. M. Raj, J. E. Jo, and S. Park, Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol, Biotechnol. Bioeng., 104, 729-739 (2009).
  14. S. H. Hong, J. S. Kim, S. Y. Lee, Y. H. In, S. S. Choi, J. K. Rih, C. H. Kim, H. Jeong, C. G. Hur, and J. J. Kim, The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens, Nat. Biotechnol., 22, 1275-1281 (2004). https://doi.org/10.1038/nbt1010
  15. S. J. Lee, H. Song, and S. Y. Lee, Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production, Appl. Environ. Microb., 72, 1939-1948 (2006). https://doi.org/10.1128/AEM.72.3.1939-1948.2006
  16. H. Song and S. Y. Lee, Production of succinic acid by bacterial fermentation, Enzyme Microb. Technol., 39, 352-361 (2006). https://doi.org/10.1016/j.enzmictec.2005.11.043
  17. R. E. Drumright, P. R. Gruber, and D. E. Henton, Polylactic acid technology, Adv. Mater., 12, 1841-1846 (2000). https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  18. R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, Synthesis of poly(lactic acid): a review, Polym. Rev., 45, 325-349 (2005).
  19. E. T. H. Vink, K. R. Rabago, D. Glassner, and P. R. Gruber, Applications of life cycle assessment to NatureWorksTM polylactide(PLA) production, Polym. Degrad. Stab., 80, 403-419 (2003). https://doi.org/10.1016/S0141-3910(02)00372-5
  20. S. Y. Lee, Bacterial polyhydroxyalkanoates, Biotechnol. Biong., 49, 1-14 (1996). https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.3.CO;2-1
  21. X. Gao, J. C. Chen, Q. Wu, and G. Q. Chen, Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels, Curr. Opin. Biotechnol., 22, 768-774 (2011). https://doi.org/10.1016/j.copbio.2011.06.005
  22. L. L. Madison and G. W. Huisman, Metabolic engineering of poly-(3-hydroxyalkanoates): from DNA to plastic, Microbiol. Mol. Biol. Rev., 63, 21-53 (1999).
  23. S. J. Park, T. W. Kim, M. K. Kim, S. Y. Lee, and S. C. Lim, Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters, Biotechnol. Adv., 30, 1196-1206 (2012). https://doi.org/10.1016/j.biotechadv.2011.11.007
  24. E. Roberts and S. Frankel, Glutamic acid decarboxylase in brain, J. Biol. Chem., 188, 789-795 (1951).
  25. H. C. Stanton, Mode of action of gamma aminobutyric acid on the cardiovascular system, Arch. Int. Pharmacodyn. Ther., 143, 195-204 (1963).
  26. S. H. Kim, B. H. Shin, Y. H. Kim, S. W. Nam, and S. Y. Jeon, Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus brevis BH2, Biotechnol. Bioprocess Eng., 12, 707-712 (2007). https://doi.org/10.1007/BF02931089
  27. Q. Wang, Y. Xin, F. Zhang, Z. Feng, J. Fu, L. Luo, and Z. Yin, Enhanced $\gamma$-aminobutyric acid-forming activity of recombinant glutamate decarboxylase (gadA) from Escherichia coli, World J. Microbiol. Biotechnol., 27, 693-700 (2011). https://doi.org/10.1007/s11274-010-0508-2
  28. 김민홍, 효소를 이용한 고순도 감마 아미노 부틸산의 제조방법 국내등록특허 10-0857215 (2008).
  29. T. H. Dinh, N. A. T. Ho, T. J. Kang, K. A. McDonald, and K. Won, Salt-free production of $\gamma$-aminobutyric acid from glutamate using glutamate decarboxylase separated from Escherichia coli, J. Chem. Tech. Biotechnol., DOI: 10.1002/jctb.4251 (2013).
  30. H. Li, T. Qiu, G. Huang, and Y. Cao, Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation, Microb. Cell. Fact., 9, 85-92 (2010). https://doi.org/10.1186/1475-2859-9-85
  31. T. D. Le Vo, T. W. Kim, and S. H. Hong, Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli, Bioprocess Biosyst. Eng., 35, 645-650 (2012). https://doi.org/10.1007/s00449-011-0634-8
  32. T. D. Le Vo, J. S. Ko, S. J. Park, S. H. Lee, and S. H. Hong, Efficient gamma-aminobutyric acid bioconversion by employing synthetic complex between glutamate decarboxylase and glutamate/GABA antiporter in engineered Escherichia coli, J. Ind. Microbiol. Biotechnol., 40, 927-933 (2013). https://doi.org/10.1007/s10295-013-1289-z
  33. T. D. Le Vo, J. S. Ko, S. H. Lee, S. J. Park, and S. H. Hong, Overexpression of Neurospora crassa OR74A glutamate decarboxylase in Escherichia coli for efficient GABA production, Biotechnol. Bioprocess Eng., 18, 1062-1066 (2013). https://doi.org/10.1007/s12257-013-0282-8
  34. A. Steinbuchel and H. E. Valentin, Diversity of bacterial polyhydroxyalkanoic acids, FEMS Microbiol. Lett., 128, 219-228 (1995). https://doi.org/10.1016/0378-1097(95)00125-O
  35. Y. K. Jung, T. Y. Kim, S. J. Park, and S. Y. Lee, Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers, Biotechnol. Bioeng., 105, 161-171 (2010). https://doi.org/10.1002/bit.22548
  36. T. H. Yang, T. W. Kim, H. O. Kang, S. H. Lee, E. J. Lee, S. C. Lim, S. O. Oh, A. J. Song, S. J. Park, and S. Y. Lee, Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase, Biotechnol. Bioeng., 105, 150-160 (2010). https://doi.org/10.1002/bit.22547
  37. W. Yuan, Y. Jia, J. Tian, K. D. Snell, U. Muh, A. J. Sinskey, R. H. Lambalot, C. T. Walsh, and J. Stubbe, Class I and III polyhydroxyalkanoate synthases from Ralstonia eutropha and Allochromatium vinosum: characterization and substrate specificity studies, Arch. Biochem. Biophys., 394, 87-98 (2001). https://doi.org/10.1006/abbi.2001.2522
  38. S. Zhang, M. Kamachi, Y. Takagi, R. W. Lenz, and S. Goodwin, Comparative study of the relationship between monomer structure and reactivity for two polyhydroxyalkanoate synthases, Appl. Microbiol. Biotechnol., 56, 131-136 (2001). https://doi.org/10.1007/s002530000562
  39. T. Selmer, A. Willanzheimer, and M. Hetzel, Propionate CoA-transferase from Clostridium propionicum. Cloning of gene and identification of glutamate 324 at the active site, Eur. J. Biochem., 269, 372-380 (2002). https://doi.org/10.1046/j.0014-2956.2001.02659.x
  40. T. H. Yang, Y. K. Jung, H. O. Kang, T. W. Kim, S. J. Park, and S. Y. Lee, Tailor-made type II Pseudomonas PHA synthases and their use for the biosynthesis of polylactic acid and its copolymer in recombinant Escherichia coli, Appl. Microbiol. Biotechnol., 90, 603-614 (2011). https://doi.org/10.1007/s00253-010-3077-2
  41. Y. K. Jung and S. Y. Lee, Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli, J. Biotechnol., 151, 94-101 (2011). https://doi.org/10.1016/j.jbiotec.2010.11.009
  42. S. J. Park, T. W. Lee, S. C. Lim, T. W. Kim, H. Lee, M. K. Kim, S. H. Lee, B. K. Song, and S. Y. Lee, Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli, Appl. Microbiol. Biotechnol., 93, 273-283 (2012). https://doi.org/10.1007/s00253-011-3530-x
  43. S. J. Park, K. H. Kang, H. Lee, A. R. Park, J. E. Yang, Y. H. Oh, B. K. Song, J. Jegal, S. H. Lee, and S. Y. Lee, Propionyl-CoA dependent biosynthesis of 2-hydroxybutyrate containing polyhydroxyalkanoates in metabolically engineered Escherichia coli, J. Biotechnol., 165, 93-98 (2013). https://doi.org/10.1016/j.jbiotec.2013.03.005
  44. S. J. Park, S. Y. Lee, T. W. Kim, Y. K. Jung, and T. H. Yang, Biosynthesis of lactate-containing polyesters by metabolically engineered bacteria, Biotechnol. J., 7, 199-212 (2012). https://doi.org/10.1002/biot.201100070
  45. S. J. Park, J. A. Jang, H. Lee, A. R. Park, J. E. Yang, J. Shin, Y. H. Oh, B. K. Song, J. Jegal, S. H. Lee, and S. Y. Lee, Metabolic engineering of Ralswwtonia eutropha for the biosynthesis of 2-hydroxyacid containing polyhydroxyalkanoates (PHAs), Metab. Eng., 20, 20-28 (2013). https://doi.org/10.1016/j.ymben.2013.08.002
  46. J. E. Yang, S. Y. Choi, J. H. Shin, S. J. Park, and S. Y. Lee, Microbial production of lactate-containing polyesters, Microb. Biotechnol., 6, 621-636 (2013).