DOI QR코드

DOI QR Code

Development of Rapid Immune-gold Strip Kit for On-Site Diagnosis of Tomato spotted wilt virus

  • Yoon, Ju-Yeon (Department of Horticulture, Biotechnology and Landscape, Seoul Women's University) ;
  • Choi, Gug-Seoun (Virology Unit, Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Cho, In-Sook (Virology Unit, Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Choi, Seung-Kook (Virology Unit, Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration)
  • Received : 2013.09.24
  • Accepted : 2014.03.04
  • Published : 2014.03.31

Abstract

A rapid, user-friendly and simple immune-chromatographic dipstick kit named 'rapid immune-gold strip' (RIGS) kit was developed in a novel single strip format to detect on-site detection of Tomato spotted wilt virus (TSWV). Immunoglobulin G (IgG) from polyclonal antisera raised in rabbits against TSWV was purified through protein-A affinity chromatography and then the purified TSWV-IgG was conjugated to colloidal gold nano-particles which served as a test line on nitrocellulose membrane. Protein A that non-specifically binds to TSWV antibody was used as a control line on the same strip. The diagnosis process with the TSWV-RIGS involves simply grinding the suspect plant sample in a bag that contains the extraction buffer and inserting the strip the bag. Results can be seen in 2-5 minutes. The flow of the complexes of gold particles coated with TSWV-IgG and a crude sap from TSWV-infected pepper, tobacco and tomato plants resulted in intensive color formed on the test lines proportional to the concentrations of TSWV. The RIGS-TSWV kit did not show any cross-reactions against other tomato-infecting viruses unrelated to TSWV. These results indicate that the TSWV-RIGS kit is highly sensitive and is not required for laboratory training and experience prior to testing. The TSWV-RIGS kit is suitable for on-site detection of suspect TSWV-infected plants as well as for laboratory diagnosis.

Keywords

References

  1. Adam, G., Peters, D. and Goldbach, R. W. 1996. Serological comparison of tospovirus isolates using polyclonal and monoclonal antibodies. Acta Hort. 431:135-158.
  2. De Avila, A. C., Huuenot, C., Resende, R., Kitajima, E. W., Goldbach, R. W. and Peters, D. 1990. Serological differentiation of 20 isolates of Tomato spotted wilt virus. J. Gen. Virol. 71: 2801-2807. https://doi.org/10.1099/0022-1317-71-12-2801
  3. Boonham, N., Smith, P., Walsh, K., Tame, J., Morris, J., Spence, N., Bennison, J. and Barker, I. 2001. The detection of Tomato spotted wilt virus (TSWV) in individual thrips using real time fluorescent RTPCR (TaqMan). J. Virol. Meth. 101: 37-48.
  4. Brittlebank, C. C. 1919. Tomato diseases. J. Agri. Victoria 27: 231-235.
  5. Cho, J. D., Kim, J. S., Kim, J. Y., Kim, J. H., Lee, S. H., Choi, G. S., Kim H. R. and Chung, B. N. 2005. Occurrence and symptoms of Tomato spotted wilt virus on vegetables in Korea. Res. Plant Dis. 11: 213-216. (In Korean) https://doi.org/10.5423/RPD.2005.11.2.213
  6. Choi, H. S., Lee, S. H., Kim, M. K., Kwak, H. R., Kim, J. S., Choi, J. D. and Choi, G. S. 2010. Occurrence of virus diseases on major crops in 2009. Res. Plant Dis. 16: 1-9. (In Korean) https://doi.org/10.5423/RPD.2010.16.1.001
  7. Daughtrey, M. L. 1996. Detection and identification of tospoviruses in greenhouses. Acta Hort. 431: 90-98.
  8. Debreczeni, D. E., Ruiz-Ruiz, S., Aramburu, J., Lopez, C., Belliure, B., Galipienso, L., Soler, S. and Rubio, L. 2011. Detection, discrimination and absolute quantitation of Tomato spotted wilt virus isolates using real time RT-PCR with TaqMan($^{(R)}$)MGB probes. J. Virol. Meth. 176: 32-37. https://doi.org/10.1016/j.jviromet.2011.05.027
  9. Dewey, R. A., Semorile, L. C. and Grau, O. 1996. Detection of Tospovirus species by RT-PCR of the N-gene and restriction enzyme digestions of the products. J. Virol. Meth. 56: 19-26. https://doi.org/10.1016/0166-0934(95)01896-4
  10. Fuji, S., Ohishi, K. and Nakamae H. 1998. Detection of Tomato spotted wilt virus in chrysanthemum by immunocapture RT-PCR assay. Proc. Kansai Plant Prot. 40: 111-112.
  11. Fukuta, S., Ohishi, K., Yoshida, K., Mizukami. Y., Ishida. A. and Kanbe, M. 2004. Development of immunocapture reverse transcription loop-mediated isothermal amplification for the detection of Tomato spotted wilt virus from chrysanthemum. J. Virol. Meth. 121: 49-55. https://doi.org/10.1016/j.jviromet.2004.05.016
  12. German, T. L., Ullman, D. E. and Moyer, J. W. 1992. Tospoviruses: Diagnosis, molecular biology, phylogeny and vector relationships. Ann. Rev. Phytopathol. 30: 315-348. https://doi.org/10.1146/annurev.py.30.090192.001531
  13. Goldbach, R. W. and Peters, D. 1996. Molecular and biological aspects of tospoviruses. The Bunyaviridae. Plenum Press, New York, USA. 129-157 pp.
  14. Gonsalves, D. and Trujillo, E. 1986. Tomato spotted wilt virus in papaya and detection of the virus by ELISA. Plant Dis. 70: 501–506. https://doi.org/10.1094/PD-70-501
  15. Horisberger, M., 1989. Quantitative aspects of labeling colloidal gold with proteins. In: Verkleij, A. J., Leunissen, J. L. M. (Eds.), Immunogold Labelling in Cell Biology. CRC Press, Boca Raton, USA.
  16. Huguenot, C., van den Dobbelsteen, G., de Haan, P., Wagemakers, C. A. M., Drost, G. A., Osterhaus, A. D. M. E. and Peters, D. 1990. Detection of Tomato spotted wilt virus using monoclonal antibodies and riboprobes. Arch. Virol. 110: 47-62. https://doi.org/10.1007/BF01310702
  17. Joubert, J. J., Hahn, J. S., von Wechmar, M. B. and van Regenmortel, M. H. V. 1974. Purification and properties of Tomato spotted wilt virus. Virology 57: 11-19. https://doi.org/10.1016/0042-6822(74)90103-2
  18. Kim, J. H., Choi, G. S., Kim, J. S. and Choi, J. K. 2004. Characterization of Tomato spotted wilt virus from paprika in Korea. Plant Pathology J. 20: 297-301. https://doi.org/10.5423/PPJ.2004.20.4.297
  19. Kranti, K. R., Davis, M., Mayee, C. D. Russell, D. A., Shulka, R. M., Satija, U., Kshirsagar, M., Shiware, D. and Kranthi, S. 2009. Development of a colloidal-gold based lateral-flow immuno-assay kit for 'quality-control' assessment of pyrethroid and endosulfan formulations in a novel single strip format. Crop Prot. 28: 428-434. https://doi.org/10.1016/j.cropro.2009.01.003
  20. Lai, C., Zheng, G. M., Huang, D. L., Feng, C. L., Hu, S., Su, F. F., Zhao, M. H., Huang, C. and Zhen, W. 2010. Detection based on immunogold labeling technique and its expected applications in composting. Chinese J. Anal. Chem. 38: 909-914. https://doi.org/10.1016/S1872-2040(09)60051-7
  21. Lai, W., Fung, D. Y. C., Xu, Y., Liu, R. and Xiong, Y. 2009. Development of a colloidal gold strip for rapid detection of ochratoxin A with mimotope peptide. Food Control 20: 791-795. https://doi.org/10.1016/j.foodcont.2008.10.007
  22. Li, X., Li, P., Zhang, Q., Li, R., Zhang, W., Zhang, Z., Ding, X. and Tang, X. 2013. Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B1, orchratoxin A and zearalenone in agro-food. Biosens. Bioelectron. 49: 426-432. https://doi.org/10.1016/j.bios.2013.05.039
  23. Moon, J., Kim, G. and Lee, S. 2012. A gold nanoparticle and aflatoxin B1-BSA conjugates based lateral flow assay method for the analysis of aflatoxin B1. Materials 5: 634-643. https://doi.org/10.3390/ma5040634
  24. Mumford, R. A., Barker, I. and Wood, K. R. 1996. An improved method for the detection of Tospoviruses using the polymerase chain reaction. J. Virol. Meth. 57: 109-115. https://doi.org/10.1016/0166-0934(95)01975-8
  25. Okuda, M. and Hanada, K. 2001. RT-PCR for detecting five distinct Tospovirus species using degenerate primers and dsRNA template. J. Virol. Meth. 96: 149-156. https://doi.org/10.1016/S0166-0934(01)00321-4
  26. Roberts, C. A., Dietzgen, R. G., Heelan, L. A. and Maclean, D. J. 2000. Real-time RT-PCR fluorescent detection of Tomato spotted wilt virus. J. Virol. Meth. 88: 1-8. https://doi.org/10.1016/S0166-0934(00)00156-7
  27. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning. A Laboratory Manual (2nd ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA.
  28. Sharma, M., Thomas, J. E. and Dietzgen, R. G. 2000. Development of a multiplex immunocapture PCR with colourimetric detection for viruses of banana. J. Virol. Meth. 89: 75-88. https://doi.org/10.1016/S0166-0934(00)00204-4
  29. Sherwood, J. L., Sanborn, M. R., Keyser, G. C. and Myers, L. D. 1989. Use of monoclonal antibodies in detection of Tomato spotted wilt virus. Phytopathol. 79: 61-64. https://doi.org/10.1094/Phyto-79-61
  30. Ullman, D. E., German, T. L., Sherwood, J. L., Westcot, D. M. and Cantone, F. A. 1993. Tospovirus replication in insect vector cells: Immunocytochemical evidence that the nonstructural protein encoded by the S RNA of Tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathol. 83: 456-463. https://doi.org/10.1094/Phyto-83-456
  31. Wang, M. and Gonsalves, D. 1990. ELISA detection of various Tomato spotted wilt virus isolates using specific antisera to structural proteins of the virus. Plant Dis. 74: 154–158. https://doi.org/10.1094/PD-74-0154
  32. Wang, S., Zhang, C., Wang, J., and Zhang, Y. 2005. Development of colloidal gold-based flow-through and lateral-flow immunoassays for the rapid detection of the insecticide carbaryl. Anal. Chim. Acta. 546: 161-166. https://doi.org/10.1016/j.aca.2005.04.088
  33. Weekes, R., Barker, I. and Wood, K. R. 1996. An RT-PCR test for the detection of Tomato spotted wilt tospovirus incorporating immunocapture and colorimetric estimation. J. Phytopathol. 144: 575-580. https://doi.org/10.1111/j.1439-0434.1996.tb00301.x
  34. Wijkamp, I., van Lent, J., Kormelink, R., Goldbach, R. and Peters, D. 1993. Multiplication of Tomato spotted wilt virus in its insect vector, Frankliniella occidentalis. J. Gen. Virol. 74: 341-349. https://doi.org/10.1099/0022-1317-74-3-341
  35. Xu, T., Xu, Q. G., Li, H., Wang, J., Li, Q. X., Shelver, W. L. and Li, J. 2012. Strip-based immuno-assay for the simultaneous detection of the neonicotinoid insecticides imidacloprid and thiamethoxam in agricultural products. Talanta 101: 85-90. https://doi.org/10.1016/j.talanta.2012.08.047
  36. Zhang, C., Zhang, Y. and Wang, S. 2006. Development of multianalyte flow-through and lateral-flow assays using gold particles and horseradish peroxidase as tracers for the rapid determination of carbaryl and endosulfan in agricultural products. J. Agric. Food Chem. 54: 2502-2507. https://doi.org/10.1021/jf0531407
  37. Zein, H. S., Nakazawa, M., Ueda, M., Ohkie, S. T., Takashima, Y. and Miyatake, K. 2006. Detection and diagnosis of Cucumber mosaic virus infected plants using monoclonal antibodies by enzymelinked immunosorbent assays. Eco-Engineering 18: 15-20.

Cited by

  1. Characterization of the adsorption dynamics of trisodium citrate on gold in water solution vol.7, pp.78, 2017, https://doi.org/10.1039/C7RA10759E