DOI QR코드

DOI QR Code

Smart Decontamination Device for Small-size Radioactive Scrap Metal Waste : Using Abrasion pin in Rotating Magnetic Field and Ultrasonic Wave Cleaner

소형 금속방사성폐기물 제염장치 개발 : 자기장 연삭핀과 초음파 세정기의 응용

  • Received : 2014.01.09
  • Accepted : 2014.03.17
  • Published : 2014.03.30

Abstract

We have developed a smart decontamination device for small-size radioactive scrap metal (SSRSM) necessarily generated from nuclear facilities. This is a multi-modal device such as rotation of magnetic field focusing on the region containing the abrasion pins placed around target and ultrasonic cleaner. Additionally, in order to increase the decontamination efficiency we have modified some configuration of the device so that it could work on them evenly and totally. With the Optimal operating for operation of the new device, we tried to decontaminate some various metal selected as a sample during 15 minutes sequentially using each method, magnetic and ultrasonic device. As a result, the range of decontamination factor has been highly increased to 18~56. After decontamination, all samples were found its activity less than background level.

원자력이용시설에서 발생한 작은 크기의 금속 조각들을 효과적으로 제염하는 스마트 장치를 개발하였다. 이 장치는 자성연마재를 포함한 영역의 자속밀도를 연속적으로 변화시키는 방법과 초음파를 이용하는 다중 제염장치이다. 한편, 제염 효율을 높이기 위해 제염 장치가 제염 대상 전체에 작용하도록 장치들의 구성을 수정하였다. 개발된 장치들의 최적 작동조건을 도출하여 샘플로 선정한 소형의 금속방사성페기물에 대하여 자기장과 초음파제염을 각각 15분간 실시하였다. 그 결과 제염계수의 범위는18~56으로 크게 향상되었으며 제염 후 모든 샘플은 백그라운드(BKG)값 이하로 확인되었다.

Keywords

References

  1. International Atomic Energy Agency, Methods for the minimization of radioactive waste from decontamination and decommissioning of nuclear facilities, Technical reports series, No.401 (2001).
  2. MOST, Strategy Establishment in Preparedness of Upcoming Nuclear Facility D&D Technology Needs, 2012.4,
  3. OECD/NEA, "Decontamination Techniques Used in Decommissioning Activities", 1999
  4. T.P Valsala, S.C. Ror, J.G. Shah, J. Gabriel, Kanwar Raj, and V.Venugopal, "Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger", Journal of Hazardous Materials, 166, pp.1148-1153 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.019
  5. L.A.Nieves, S.Y. Chen, E.J. Kohout, B. Nabelssi, R.W. Tilbrook, and S.E. Wilson, "Analysis of Disposition Alternatives for Radioactively contaminated Scrap Metal, Journal of the Franklin Institute, 335, pp. 1089-1103 (1998). https://doi.org/10.1016/S0016-0032(97)00055-0
  6. Paulo Ernesto de O. Lainetti1, Development of a new process for radioactive decontamination of painted carbon steel structures by molten salt stripping, INAC 2009: International nuclear atlantic conference, p.12 (2009).
  7. Separation of Rare Metal Fission Products in Radioactive Wastes in New Directions of their Utilization, Progress in nuclear Energy, 47(1-4), pp.462-471 (2005). https://doi.org/10.1016/j.pnucene.2005.05.047
  8. Radioactive Scrap Metal Decontamination Technology Assessment Report, Sandia Report (1996).
  9. Ministry of Science and Technology, Cleaning Technology Development using a New Solvent for Green Nuclear Energy (2003).
  10. KEPCO/Institute of Nuclear Environment, Surface decontamination technology development for Radioactive waste volume reduction (2001).
  11. ACT CO. Ltd, "Decontamination device development of the final report for using Magnetic field" (2009).
  12. Decontamination of radioisotopes, Reports of Practical Oncology and Radiotherapy 16(4), pp. 147-152 (2011). https://doi.org/10.1016/j.rpor.2011.05.002
  13. Physical Principles of Ultrasonic Technology, Vol. 1. Edited by L. D. Rozenberg, Translated from Russian by J. S. Wood, Plenum Press, New York (1973).
  14. H.J. Won, G.N. Kim, C.H. Jung, J.H. Park, and W.Z. Oh, "PFC Ultrasonic Decontamination Efficiency on the Various Types of Metal Specimens", J. of the Korean Radioact. Waste Soc., 3(4), pp. 293-300 (2005).