Abstract
Cu-Al-Mn shape memory alloys of a variety of composition were characterized in terms of shape memory properties and cold workability. Cold workability tested by cold rolling indicated that the alloys solution treated in the ${\alpha}+{\beta}$ region have a higher ductility than those solution treated in the ${\beta}$ region. Also it is known that cold workability increased with the decrease in Al content in the ${\beta}$ region. This seems to be resulted from the fact that Mn addition causes to expand ${\beta}$ region toward lower Al content and lower order-disorder transition temperature, consequently, ${\beta}$ of excellent workability being frozen even at room temperature. Experimental results regarding shape memory showed that the properties were better with a higher Al contents at a given Mn content, which is closely related with martensitic transformation. It is also shown that super elasticity limit was enhanced with decrease in the yield strength of alloys because a lower yield strength seems to initiates slip at the lower applied stress.