DOI QR코드

DOI QR Code

트위스티드 다이오드 연결 구조를 이용한 저전압 스윙 도미노 로직

A New Small-Swing Domino Logic based on Twisted Diode Connections

  • 안상윤 (충북대학교 전자정보대학) ;
  • 김석만 (충북대학교 전자정보대학) ;
  • 장영조 (한국기술교육대학교 정보기술공학부) ;
  • 조경록 (충북대학교 전자정보대학)
  • Ahn, Sang-Yun (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Kim, Seok-Man (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Jang, Young-Jo (School of Information Technology Engineering, Korea University of Technology and Education) ;
  • Cho, Kyoungrok (College of Electrical and Computer Engineering, Chungbuk National University)
  • 투고 : 2014.01.06
  • 심사 : 2014.04.04
  • 발행 : 2014.04.25

초록

본 논문에서는, 트위스티드 연결구조를 이용한 새로운 저전압 스윙 도미노 로직 회로를 제안한다. 제안된 회로의 출력스윙 범위는 트위스티드 트랜지스터의 사이즈와 출력 캐패시턴스의 크기에 따라 조절가능하다. 제안된 회로를 적용한 리플캐리덧셈기(Ripple Carry Adder)는 도미노 CMOS로직에 비해 전력소비는 37%감소했고 전력 지연 곱(power-delay product)은 43%감소했다.

In this paper, we propose a new small swing domino logic that reduces the swing amplitude by using twist-connected PMOS and NMOS transistors. The output swing range of the proposed circuit is adjusted by the size of the twist-connected transistors and the load capacitance. The designed RCA with the proposed circuit technique shows reduction of the power consumption by 37% and PDP performance by 43% compared with the domino CMOS logic.

키워드

참고문헌

  1. Z. Liu and V. Kursun, "Robust dynamic node low voltage swing domino logic with multiple threshold voltages," International Symposium on ISQED, pp. 30-36, San Jose, USA, March 2006.
  2. R. Mader and I. Kourtev, "Reduced dynamic swing domino logic," Great Lakes Symposium on VLSI, pp. 33-36, Washington, USA, April 2003.
  3. S. M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design (3rd. edition), McGraw Hill, 2003.
  4. F. Tang, A. Bermak and Z. Gu, "Low power dynamic logic circuit design using a pseudo dynamic buffer," Integration, the VLSI journal, vol. 45, no. 4, pp. 395-404, September 2012. https://doi.org/10.1016/j.vlsi.2011.08.003
  5. I. Hassoune, F. Mace, D. Flandre, and J. D. Legat, "Dynamic differential self-timed logic families for robust and low-power security ICs," Integration, the VLSI journal, vol. 40, no. 3, pp. 355-364, Apr. 2007. https://doi.org/10.1016/j.vlsi.2006.04.001
  6. A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, "Low-power CMOS digital design," IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473-484, Apr. 1992. https://doi.org/10.1109/4.126534
  7. A. Rjoub and O. Koufopavlou, "Low-power domino logic multiplier using low-swing technique," in Proc. IEEE Int. Conf. Electronics, Circuits and Systems, vol. 2, pp. 45-48, Lisboa, Portugal, Sept. 1998.
  8. E. D. Kyriakis-Bitzaros and S. S. Nikolaidis, "Design of low power CMOS drivers based on charge recycling," in Proc. IEEE Int. Symp. Circuits and Systems, vol. 3, pp. 1924-1927, Hong Kong, Jun. 1997.
  9. A. Rjoub and O. Koufopavlou, "Low-swing/low power driver architecture," in Proc. IEEE Int. Conf. Electronics, Circuits and Systems, vol. 2, pp. 639-642, Pafos, Paphos, Cyprus, Sep. 1999.
  10. S. M. Kang, "Accurate simulation of power dissipation in VLSI circuits," IEEE J. Solid State Circuits, vol. SC-21, no. 5, pp. 889-891, Oct. 1986. https://doi.org/10.1109/JSSC.1986.1052622
  11. Sung-Hyun Yang, Doo-Hwan Kim, KyoungRok Cho, "A Small Swing Domino Logic for Low Power Consumption," Journal of the Institute of Electronics Engineers of Korea, vol. SC-41, no. 6, Nov. 2004.
  12. Martins, J. Baptista, R. Reis, and J. Monteiro. "Capacitance and Power Modeling at Logic-Level," International Conference On clup Design Aulomtion, pp. 203-210, Bedding, China. Aug. 2000.