DOI QR코드

DOI QR Code

High Power Single Mode Multi-Oxide Layer VCSEL with Optimized Thicknesses and Aperture Sizes of Oxide Layers

  • Yazdanypoor, Mohammad (Department of Opto-electronics, Shiraz University of Technology) ;
  • Emami, Farzin (Department of Opto-electronics, Shiraz University of Technology)
  • Received : 2014.01.07
  • Accepted : 2014.02.11
  • Published : 2014.04.25

Abstract

A novel multi-oxide layer structure for vertical cavity surface emitting laser (VCSEL) structures is proposed to achieve higher single mode output power. The structure has four oxide layers with different aperture sizes and thicknesses. The oxide layer thicknesses are optimized simultaneously to reach the highest single mode output power. A heuristic method is proposed for plotting the influence of these variable changes on the operation of optical output power. A comprehensive optical-electrical thermal-gain self-consistent VCSEL model is used to simulate the continuous-wave operation of the multi-layer oxide VCSELs. A comparison between optimized VCSELs with different structures is presented. The results show that by using multi-oxide layers with different thicknesses, higher single-mode optical output power could be achieved in comparison with multi-oxide layer structures with the same thicknesses.

Keywords

References

  1. M. S. Alias, B. Kamaluddin, and M. R. Muhamad, "Mode analysis of long-wavelength vertical-cavity surface-emitting lasers diode," in Proc. ICSE Conference (Kuala Lampur, Malaysia, Dec. 2004), pp. 407-411.
  2. M. Yazdanypoor and A. Gholami, "Optimizing optical output power of single mode VCSELs using multiple oxide layers," IEEE J. Select. Topics Quantum Electron. 19, 1701708 (2013). https://doi.org/10.1109/JSTQE.2013.2252002
  3. M. Yazdanypoor and A. Gholami, "Optical power optimization of the single mode vertical cavity surface emitting lasers by two oxide layers," Advanced Material Research 383, 6283- 6288 (2011).
  4. N. Nishiyama, M. Arai, S. Shinada, K. Suzuki, F. Koyama, and K. Iga, "Multi-oxide layer structure for single-mode operation in vertical-cavity surface-emitting lasers," IEEE Photon. Technol. Lett. 12, 606-608 (2000). https://doi.org/10.1109/68.849058
  5. K. D. Choquette, W. W. Chow, and G. R. hadley, "Scalability of small-aperture selectively oxidized verticalcavity surface emitting lasers," Appl. Phys. Lett. 70, 823- 825 (1997). https://doi.org/10.1063/1.118234
  6. C. Degen, W. Elsaber, and I. Fischer, "Transverse modes in oxide confined VCSELs: Influence of pump profile, spatial hole burning, and thermal effects," Opt. Express 5, 38-47 (1999). https://doi.org/10.1364/OE.5.000038
  7. W. Nakwaski and R. P. Sarzala, "Transverse mode in gainguided vertical-cavity surface emitting lasers," Opt. Commun. 148, 63-69 (1998). https://doi.org/10.1016/S0030-4018(97)00616-0
  8. E. R. Hegblom, "Engineering oxide apertures in vertical cavity lasers," Ph.D Dissertation, Electrical and Computer Engineering, University of California (1999).
  9. R. P. Sarzala and W. Nakwaski, "Separate-confinementoxidation VCSEL structure," J. Appl. Phys. 99, 123110 (2006). https://doi.org/10.1063/1.2206129
  10. P. Beinstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, B. F. G. Paolo, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J. F. P. Seurin, and S. L. Chuang, "Comparison of optical VCSEL models on the simulation at oxideconfined devices," IEEE J. Quantum Electron. 37, 1618- 1631 (2001). https://doi.org/10.1109/3.970909
  11. H. Wenzel and H. J. Wunsche, "The effective frequency method in the analysis of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 33, 1156-1162 (1997). https://doi.org/10.1109/3.594878
  12. R. P. Sarzala, "Physical analysis of an operation of GaInAs/ GaAs quantum-well vertical-cavity surface-emitting diode lasers emitting in the 1.3-$\mu{m}$ wavelength range," Optica Aplicata 35, 225-240 (2005).
  13. S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers, 1st ed. (Wiley Series in Lasers and Applications, September 2003).
  14. J. Piprek, D. I. Babic, and J. E. Bowers, "Simulation and analysis of 1.55 mm double-fused vertical-cavity lasers," J. Appl. Phys. 81, 3382-3390 (1997). https://doi.org/10.1063/1.365033
  15. J. Minch, S. H. Park, T. Keating, and S. L. Chuang, "Theory and experiment of $In_{1-x}Ga_{x}As_{y}P_{1-y}$ and $In_{1-x-y}Ga_{x}Al_{y}$ As long-wavelength strained quantum-well lasers," IEEE J. Quantum Electron. 35, 771-782 (1999). https://doi.org/10.1109/3.760325
  16. H. J. Wunsche, H. Wenzel, U. Bandelow, J. Piprek, H. Gajewski, and J. Rehberg, "2D modeling of distributed feedback semiconductor lasers," Simulation of Semiconductor Devices and Processes 4, 65-70 (1991).

Cited by

  1. Research Progress of VCSEL vol.07, pp.02, 2017, https://doi.org/10.12677/OE.2017.72008