References
- M. Niemeijer, B. van Ginneken, S. R. Russell, M. S. Suttorp-Schulten, and M. D. Abramoff, "Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis," Investigative Ophthalmology & Visual Science 48, 2260-2267 (2007). https://doi.org/10.1167/iovs.06-0996
- N. H. Cho, U. Jung, S. Kim, W. Jung, J. Oh, H. W. Kang, and J. Kim, "High speed SD-OCT system using GPU accelerated mode for in vivo human eye imaging," J. Opt. Soc. Korea 17, 68-72 (2013). https://doi.org/10.3807/JOSK.2013.17.1.068
- J. Lammer, C. Scholda, C. Prunte, T. Benesch, U. Schmidt- Erfurth, and M. Bolz, "Retinal thickness and volume measurements in diabetic macular edema: A comparison of four optical coherence tomography systems," Retina 31, 48-55 (2011). https://doi.org/10.1097/IAE.0b013e3181e095a4
- F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, and E. Grube, "Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: Physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis," European Heart Journal 31, 401-415 (2010). https://doi.org/10.1093/eurheartj/ehp433
- V. Ntziachristos, "Going deeper than microscopy: The optical imaging frontier in biology," Nature methods 7, 603-614 (2010). https://doi.org/10.1038/nmeth.1483
- S. Mallidi, G. P. Luke, and S. Emelianov, "Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance," Trends in Biotechnology 29, 213-221 (2011). https://doi.org/10.1016/j.tibtech.2011.01.006
- S. Y. Nam, L. M. Ricles, L. J. Suggs, and S. Y. Emelianov, "In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers," PLoS One 7, e37267 (2012). https://doi.org/10.1371/journal.pone.0037267
- L. V. Wang and S. Hu, "Photoacoustic tomography: In vivo imaging from organelles to organs," Science 335, 1458-1462 (2012). https://doi.org/10.1126/science.1216210
- P. Beard, "Biomedical photoacoustic imaging," Interface Focus 1, 602-631 (2011). https://doi.org/10.1098/rsfs.2011.0028
- S. Y. Emelianov, P.-C. Li, and M. O'Donnell, "Photoacoustics for molecular imaging and therapy," Physics Today 62, 34 (2009).
- B. C. Hayden, L. Kelley, and A. D. Singh, "Ophthalmic ultrasonography: Theoretic and practical considerations," Ultrasound Clinics 3, 179-183 (2008). https://doi.org/10.1016/j.cult.2008.04.007
- W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, "Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform," Journal of Biomedical Optics 17, 061206- 1-061206-7 (2012). https://doi.org/10.1117/1.JBO.17.6.061206
- X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, "Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging," Journal of Biomedical Optics 16, 080504-080504-080503 (2011). https://doi.org/10.1117/1.3606569
- S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, "Photoacoustic ophthalmoscopy for in vivo retinal imaging," Opt. Express 18, 3967-3972 (2010). https://doi.org/10.1364/OE.18.003967
Cited by
- Three-dimensional photoacoustic imaging via scanning a one dimensional linear unfocused ultrasound array vol.25, pp.7, 2017, https://doi.org/10.1364/OE.25.008022
- High-frequency optoacoustic transmitter based on nanostructured germanium via metal-assisted chemical etching vol.6, pp.8, 2016, https://doi.org/10.1364/OME.6.002567
- Optoacoustic Ultrasound Generator Based on Nanostructured Germanium vol.26, pp.5, 2015, https://doi.org/10.3807/KJOP.2015.26.5.255
- Skeletonization algorithm-based blood vessel quantification usingin vivo3D photoacoustic imaging vol.61, pp.22, 2016, https://doi.org/10.1088/0031-9155/61/22/7994
- Tutorial on photoacoustic tomography vol.21, pp.6, 2016, https://doi.org/10.1117/1.JBO.21.6.061007
- In vivo photoacoustic imaging of chorioretinal oxygen gradients vol.23, pp.03, 2018, https://doi.org/10.1117/1.JBO.23.3.036005
- Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo vol.23, pp.04, 2018, https://doi.org/10.1117/1.JBO.23.4.046006
- Photoacoustic image formation based on sparse regularization of minimum variance beamformer vol.9, pp.6, 2018, https://doi.org/10.1364/BOE.9.002544
- Validation of delay-multiply-and-standard-deviation weighting factor for improved photoacoustic imaging of sentinel lymph node pp.1864063X, 2019, https://doi.org/10.1002/jbio.201800292