DOI QR코드

DOI QR Code

On the Optimization of Raman Fiber Amplifier using Genetic Algorithm in the Scenario of a 64 nm 320 Channels Dense Wavelength Division Multiplexed System

  • Singh, Simranjit (Department of Electronics and Communication Engineering, Punjabi University) ;
  • Saini, Sonak (Department of Electronics and Communication Engineering, Punjabi University) ;
  • Kaur, Gurpreet (Department of Electronics and Communication Engineering, Punjabi University) ;
  • Kaler, Rajinder Singh (Department of Electronics and Communication Engineering, Thapar University)
  • 투고 : 2013.12.10
  • 심사 : 2014.03.17
  • 발행 : 2014.04.25

초록

For multi parameter optimization of Raman Fiber Amplifier (RFA), a simple genetic algorithm is presented in the scenario of a 320 channel Dense Wavelength Division Multiplexed (DWDM) system at channel spacing of 25 GHz. The large average gain (> 22 dB) is observed from optimized RFA with the optimized parameters, such as 39.6 km of Raman length with counter-propagating pumps tuned to 205.5 THz and 211.9 THz at pump powers of 234.3 mW, 677.1 mW respectively. The gain flattening filter (GFF) has also been optimized to further reduce the gain ripple across the frequency range from 190 to 197.975 THz for broadband amplification.

키워드

참고문헌

  1. D. M. Spirit and M. O. Mahoney, High Capacity Optical Transmission Explained (Wiley-BT Series, USA, 1995).
  2. S. Singh and R. S. Kaler, "Flat gain L-band Raman-EDFA hybrid optical amplifier for dense wavelength division multiplexed system," IEEE Photon. Technol. Lett. 25, 250- 252 (2013). https://doi.org/10.1109/LPT.2012.2231406
  3. G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press: Optics and Photonics, USA, 2012).
  4. J. H. Lee, Y. M. Chang, Y. G. Han, H. Chung, S. H. Kim, and S. B. Lee, "A detailed experimental study on singlepump Raman/EDFA hybrid amplifiers: Static, dynamic, and system performance comparison," J. Lightwave Technol. 23, 3483-3493 (2005).
  5. R. S. Kaler, A. K. Sharma, R. K. Sinha, and T. S. Kamal, "Power penalty analysis for realistic weight functions using differential time delay with higher-order dispersion," Opt. Fiber Technol. 8, 240-255 (2002). https://doi.org/10.1016/S1068-5200(02)00009-3
  6. S. Singh and R. S. Kaler, "Performance evaluation of 64${\times}$ 10 Gbps and 96 ${\times}$ 10 Gbps DWDM system with hybrid optical amplifier for different modulation formats," Optik 123, 2199-2203 (2012). https://doi.org/10.1016/j.ijleo.2011.11.015
  7. S. Singh and R. S. Kaler, "Investigation of hybrid optical amplifiers for dense wavelength division multiplexed system with reduced spacing at higher bit rates," Fiber and Integrated Opt. 31, 208-220 (2012). https://doi.org/10.1080/01468030.2012.666818
  8. S. Singh and R. S. Kaler, "Novel optical flat gain hybrid amplifier for dense wavelength division multiplexed system," IEEE Photon. Technol. Lett. 26, 173-176 (2014). https://doi.org/10.1109/LPT.2013.2291035
  9. S. Singh and R. S. Kaler, "Investigation of hybrid optical amplifiers with different modulation formats for DWDM optical communication system," Optik 124, 2131-2134 (2013). https://doi.org/10.1016/j.ijleo.2012.06.060
  10. S. Singh and R. S. Kaler, "Influence of the word length and input power on nonlinear crosstalk induced by hybrid optical amplifiers," Opt. Fiber Technol. 19, 428-431 (2013). https://doi.org/10.1016/j.yofte.2013.05.009
  11. F. Emami and M. Akhlaghi, "Gain ripple decrement of s-band raman amplifiers," IEEE Photon. Technol. Lett. 24, 1349-1351 (2012). https://doi.org/10.1109/LPT.2012.2203591
  12. G. C. M. Ferreira, S. P. N. Cani, M. J. Pontes, and M. E. V. Segatto, "Optimization of distributed Raman amplifiers using a hybrid genetic algorithm with geometric compensation technique," IEEE Photon. Journal 3, 390-399 (2011). https://doi.org/10.1109/JPHOT.2011.2140366
  13. C. J. A. Bastos-Filho, J. F. Martins-Filho, and M. E. V. Segatto, "Simple design of Raman fiber amplifiers using a multi-objective optimizer," in Proc. 11th International Conference on Intelligent Systems Design and Applications (Cordoba, Spain, 2011), pp. 1128-1133.
  14. M. N. Islam, Raman Amplifiers for Telecommmunications-1 Physical Principles (Springer, New York, USA, 2004), Chapter 2.
  15. V. E. Perlin and H. G. Winful, "On distributed Raman amplification for ultrabroad-band long-haul WDM systems," J. Lightwave Technol. 20, 409-416 (2002). https://doi.org/10.1109/50.988989
  16. R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms (John Wiley and Sons, New Jersey, USA, 2004).
  17. J. S. Yoon and N. Kim, "Optimization of diffractive optical elements by genetic algorithm," J. Opt. Soc. Korea 4, 30- 36 (2000). https://doi.org/10.3807/JOSK.2000.4.1.030
  18. S. Singh, S. Saini, G. Kaur, and R. S. Kaler, "Multi parameter optimization of Raman fiber amplifier using genetic algorithm for L band dense wavelength division multiplexed system," Opt. Eng. 53, 016103-1-016103-7 (2014). https://doi.org/10.1117/1.OE.53.1.016103
  19. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier," IEEE Photon. Technol. Lett. 11, 530-532 (1999). https://doi.org/10.1109/68.759388
  20. J. M. Ferreira, R. Nogueira, P. Monteiro, and A. N. Pinto, "Weighted undepleted pump model for broadband counterpumped Raman fiber amplifiers," J. Opt. Comm. Netw. 4, 595-602 (2012). https://doi.org/10.1364/JOCN.4.000595

피인용 문헌

  1. Performance investigation of hybrid optical amplifier using recycled residual pumping vol.83, pp.8, 2016, https://doi.org/10.1364/JOT.83.000498
  2. Optimizing the Net Gain of a Raman-EDFA Hybrid Optical Amplifier using a Genetic Algorithm vol.18, pp.5, 2014, https://doi.org/10.3807/JOSK.2014.18.5.442
  3. Performance Analysis of Backward Multipumped Raman Amplifier in DWDM System vol.115, 2017, https://doi.org/10.1016/j.procs.2017.09.124
  4. On the optimization of fiber Bragg grating optical sensor using genetic algorithm to monitor the strain of civil structure with high sensitivity vol.55, pp.8, 2016, https://doi.org/10.1117/1.OE.55.8.087103
  5. Design Optimization of EDFA for 16 × 10 Gbps Data Rate DWDM System Using Different Pumping Configurations pp.1572-834X, 2018, https://doi.org/10.1007/s11277-018-5926-8
  6. Experimental, Characterization and Optimization of the Pumping Power of an EDFA by a QPDSF Configuration vol.0, pp.0, 2018, https://doi.org/10.1515/joc-2018-0018
  7. Performance Analysis of Flat Gain Wideband Raman Amplifier for S+C and C+L Band DWDM System vol.2018, pp.1687-5648, 2018, https://doi.org/10.1155/2018/5703805