DOI QR코드

DOI QR Code

The Interaction of Polysaccharides Isolated from Auricularia Polytricha with Human Serum Albumin

  • Wang, Wei (School of Biological Sciences and Biotechnology, Minnan Normal University) ;
  • Zhang, Guoguang (School of Biological Sciences and Biotechnology, Minnan Normal University) ;
  • Zou, Jinmei (School of Biological Sciences and Biotechnology, Minnan Normal University)
  • Received : 2013.06.15
  • Accepted : 2013.09.02
  • Published : 2014.03.31

Abstract

Polysaccharides have attracted great attention for their wide range of applications in biological and medical fields. In this paper, the interaction of polysaccharides with human serum albumin (HSA) was systematically investigated by fluorescence (FL) spectroscopy and circular dichroism (CD) spectra under different conditions. The Stern-Volmer quenching constants ($K_a$) at different ionic strength and pH were calculated, and information of the structural features of HSA was discussed. FL and CD results indicate that both hydrophobic and electrostatic interactions play important roles during the binding process. The quenching of the fluorescence resulting the binding of polysaccharides and HSA is static.

Keywords

References

  1. Bhattacharya AA, Curry S, and Franks NP (2000) Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures. J Biol Chem 275, 38731-8. https://doi.org/10.1074/jbc.M005460200
  2. Bordbar AK, Eslami A, and Tangestaninejad S (2002) Spectral investigation on solution properties of 5, 10, 15, 20-tetrakis (N-Benzyl-4-Pyridyl) porphyrin and due to its interaction with human serum albumin. J Porphyrins Phthalocya 6, 225-32. https://doi.org/10.1142/S1088424602000269
  3. Byon HR and Choi HC (2006) Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased schottky contact area for highly sensitive biosensor applications. J Am Chem Soc 128, 2188-9. https://doi.org/10.1021/ja056897n
  4. Carter DC and Ho JX (1994) Structure of serum albumin. Protein Chem Adv 45, 153-203. https://doi.org/10.1016/S0065-3233(08)60640-3
  5. Gao MY, Kirstein S, Mohwald H, Rogach AL, Kornowski A, Eychmuller A et al. (1998) Strongly photoluminescent CdTe nanocrystals by proper surface modification. J Phys Chem B 102, 8360-3. https://doi.org/10.1021/jp9823603
  6. Hansen UK (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33, 17-51.
  7. Kalodimos CG, Biris N, Bonvin AMJJ, Levandoski MM, Guennuegues M, Boelens R et al. (2004) Structure and exibility adaptation in nonspecic and specic protein-DNA complexes. Science 305, 386-9. https://doi.org/10.1126/science.1097064
  8. Lakowicz JR (2006) In Principles of fluorescence spectroscopy, Plenum Press New York, 277-85.
  9. Li S, Wang YZ, Jiang JG, and Dong SJ (2007) pH-Dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23, 2714-21. https://doi.org/10.1021/la062064e
  10. Nathanie LR and Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105, 1547-62. https://doi.org/10.1021/cr030067f
  11. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40, 4128-58. https://doi.org/10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
  12. Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY et al. (2004) Self-assembling protein microarrays. Science 305, 86-9. https://doi.org/10.1126/science.1097639
  13. Sahin NO and Burgess DJ (2003) Competitive interfacial adsorption of blood proteins. Farmaco 58, 1017-21. https://doi.org/10.1016/S0014-827X(03)00183-6
  14. Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, and Kaneo Y (2004) Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Int J Pharmaceut 277, 39-61. https://doi.org/10.1016/j.ijpharm.2003.09.050
  15. Wang QS, Liu PF, Zhou XL, Zhang XL, Fang TT, Liu P et al. (2012) Thermodynamic and conformational investigation of the influence of size on the toxic interaction with HSA. Photochemistry and Photobiolog A:Chemistry 230, 23-30.
  16. Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1, 172-9. https://doi.org/10.1002/smll.200400130
  17. Xiao JB, Chen TT, Chen LS, Cao H, Yang F, and Bai YL (2010) CdTe polysaccharidess (Polysaccharides) improve the afnities of baicalein and genistein for human serum albumin in vitro. J Inorg Biochem 104, 1148-55. https://doi.org/10.1016/j.jinorgbio.2010.07.003
  18. Xiao Q, Huang S, Qia ZD, Zhou B, He ZK, and Liu Y (2008) Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS polysaccharides. Biochimica et Biophysica Acta 1784, 1020-7. https://doi.org/10.1016/j.bbapap.2008.03.018
  19. Yamada T, Iwasaki Y, Tada H, Wabuki HI, Chuah MKL, Driessche TV et al. (2003) Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat Biotechnol 21, 885-90. https://doi.org/10.1038/nbt843