References
- Cerrito, P., Olson, D. and Ostaszwski, K. (1998). Nonparametric statistical tests for the random walk in stock prices. Advances in Quantitative Analysis of Finance and Accounting, 6, 27-36.
- Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74, 427-431.
- Fama, E. F., and French, K. R. (1988). Dividend yields and expected stock returns. Journal of Financial Economics, 22, 3-25. https://doi.org/10.1016/0304-405X(88)90020-7
- Hamilton, J. D. (1994). Time series analysis, Vol. 2, Princeton University Press, Princeton.
- Maddala, G. S. and Kim, I-M. (1998). Unit roots, cointegration and structural change, Oxford University Press, Oxford.
- Malkiel, B. G. (1973). A random walk down Wall Street, 6th ed., W. W. Norton & Company, Inc, New York.
- Nakamura, T. and Small, M. (2007). Testing for random walk. Physics Letters A, 362, 189-197. https://doi.org/10.1016/j.physleta.2006.10.018
- Schwert, G. W. (1987). Effects of model specification on tests for unit roots in macroeconomic data. Journal of Monetary Economics, 20, 73-103. https://doi.org/10.1016/0304-3932(87)90059-6
- Shin, D. W. and Park, S. J. (2007). A sign test for unit roots in a seasonal MTAR model. Journal of the Korean Statistical Society, 36, 149-156.
- So, B. S. and Shin, D. W. (2001). An invariant sign test for random walks based on recursive median adjustment. Journal of Econometrics, 102, 197-229. https://doi.org/10.1016/S0304-4076(01)00053-7
Cited by
- A study on the slope sign test for explosive autoregressive models vol.26, pp.4, 2015, https://doi.org/10.7465/jkdi.2015.26.4.791
- A Wilcoxon signed-rank test for random walk hypothesis based on slopes vol.25, pp.6, 2014, https://doi.org/10.7465/jkdi.2014.25.6.1499