DOI QR코드

DOI QR Code

Adsorptive Desulfurization of Diesel for Fuel Cell Applications: A Screening Test

  • Ho, Hoang Phuoc (Department of Chemical Engineering, Pukyong National University) ;
  • Kim, Woo Hyeong (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, So-Yun (Department of Chemical Engineering, Pukyong National University) ;
  • Son, Hong-Rok (Fuel Cell R&BDE Center, POSCO Energy) ;
  • Kim, Nak Hyeon (Fuel Cell R&BDE Center, POSCO Energy) ;
  • Kim, Jae-Kon (Petroleum Technology R&D Center, Korea Institute of Petroleum Management) ;
  • Park, Jo-Yong (Petroleum Technology R&D Center, Korea Institute of Petroleum Management) ;
  • Woo, Hee Chul (Department of Chemical Engineering, Pukyong National University)
  • 투고 : 2014.03.13
  • 심사 : 2014.03.21
  • 발행 : 2014.03.31

초록

경유는 연료전지 시스템의 연료원으로써 주목받고 있는 탄화수소 액체연료 중 하나로, 연료개질 촉매와 연료전지의 전극재료를 피독시키는 황화합물을 포함하고 있어 탈황공정이 필요한 것으로 여겨지고 있다. 다양하고도 대안적인 탈황기술이 연구되고 있으나, 초저유황 경유의 탈황 연구는 여전히 부진한 실정이다. 본 연구는 용융탄산염 연료전지 시스템에 응용될 수 있는 원료인 상용초저유황 경유의 탈황에 관한 것이다. 여기서 초저유황의 흡착탈황을 위한 흡착제로 활성탄, 제올라이트, 금속산화물 계 상용흡착제 후보군이 선정되었고 유망한 탈황제를 찾기 위한 스크리닝 평가를 실시하였다. 그 결과 초저유황 경유의 황농도를 0.1 ppmw 수준까지 떨어뜨리기 위한 흡착제 종류로 금속산화물계가 매우 유용하며, 활성탄과 제올라이트 흡착제는 같은 실험조건에서 해당 수준의 황 농도에 이르지 못하는 것으로 나타났다.

During the past decades much attention has been paid to the desulfurization of diesel oil which is important as a source for the fuel cells to prevent the sulfur poisoning of both diesel steam reforming catalyst and electrode of fuel cell. Although alternative desulfurization techniques have been investigated, desulfurization for ultra-low sulfur diesel (ULSD) is still challenged. Therefore, this research focuses on the desulfurization of commercial ULSD for the application to molten carbonate fuel cell (MCFC). Herein, the performances of several kinds of commercial adsorbents based on activated carbons, zeolites, and metal oxides for desulfurization of ULSD were screened. The results showed that metal oxides based materials can feasibly reduce sulfur concentration in ULSD to a level of 0.1 ppmw while activated carbons and zeolites did not reach this level at current conditions.

키워드

참고문헌

  1. Ma, X., Velu, S., Kim, J. H., and Song, C. S., "Deep Desulfurization of Gasoline by Selective Adsorption over Solid Adsorbents and Impact of Analytical Methods on ppm-level Sulfur Quantification for Fuel Cell Applications," Appl. Catal. B, 56, 137-147 (2005). https://doi.org/10.1016/j.apcatb.2004.08.013
  2. Sammes, N. (Editor), Fuel Cell Technology-Reaching Towards Commercialization, Springer, London, 2006, pp. 167.
  3. Avadikyan, A., Cohendet, P., and Heraud, A. J., The Economic Dynamics of Fuel Cell Technologies, Springer, Berlin, 2003, pp. 23-42.
  4. Seredych, M., Lison, J., Jans, U., and Bandosz, T. J., "Textural and Chemical Factors Affecting Adsorption Capacity of Activated Carbon in Highly Efficient Desulfurization of Diesel Fuel," Carbon, 47, 2491-2500 (2009). https://doi.org/10.1016/j.carbon.2009.05.001
  5. Wang, Y., and Yang, R. T., "Desulfurization of Liquid Fuels by Adsorption on Carbon-based Sorbents and Ultrasound-assisted Sorbent Regeneration," Langmuir, 23, 3825-3831 (2007). https://doi.org/10.1021/la063364z
  6. Marin-Rosas, C., Ramirez-Verduzco, L. F., Murrieta-Guevara, F. R., Hernandez-Tapia, and G., Rodriguez-Otal, L. M., "Desulfurization of Low Sulfur Diesel by Adsorption Using Activated Carbon: Adsorption Isotherms," Ind. Eng. Chem. Res., 49, 4372-4376 (2010). https://doi.org/10.1021/ie901756b
  7. Jeon, H. J., Ko, C. H., Kim, S. H., and Kim, J. N., "Removal of Refractory Sulfur Compounds in Diesel Using Activated Carbon with Controlled Porosity," Energy Fuels, 23, 2537-2543 (2009). https://doi.org/10.1021/ef801050k
  8. Hernandez-Maldonado, A. J., and Yang, R. T., "Desulfurization of Diesel Fuels by Adsorption via ${\pi}$-Complexation with Vapor-Phase Exchanged Cu(I)-Y Zeolites," J. Am. Chem. Soc., 126, 992-993 (2004). https://doi.org/10.1021/ja039304m
  9. Hernandez-Maldonado, A. J., and Yang, R. T., "Desulfurization of Diesel Fuels via ${\pi}$-Complexation with Nickel (II)-Exchanged X- and Y-Zeolites," Ind. Eng. Chem. Res., 43, 1081-1089 (2004). https://doi.org/10.1021/ie034206v
  10. Hernandez-Maldonado, A. J., and Yang, R. T., "Desulfurization of Liquid Fuels by Adsorption via ${\pi}$ Complexation with Cu(I)-Y and Ag-Y Zeolites," Ind. Eng. Chem. Res., 42, 123-129 (2003). https://doi.org/10.1021/ie020728j
  11. Gong, Y., Dou, T., Kang, S., Li, Q., and Hu, Y., "Deep Desulfurization of Gasoline Using Ion-exchange Zeolites: Cu(I)-and Ag(I)-beta," Fuel Proc. Technol., 90, 122-129 (2009). https://doi.org/10.1016/j.fuproc.2008.08.003
  12. Khan, N. A., and Jhung, S. H., "Low-temperature Loading of Cu+ Species over Porous Metal-organic Frameworks (MOFs) and Adsorptive Desulfurization with $Cu^+$-loaded MOFs," J. Hazard. Mater., 237-238, 180-185 (2012). https://doi.org/10.1016/j.jhazmat.2012.08.025
  13. Peralta, D., Chaplais, G., Simon-Masseron, A., Barthelet, K., and Pirngruber, G. D.,"Metal-Organic Framework Materials for Desulfurization by Adsorption," Energy Fuel, 26, 4953-4960 (2012). https://doi.org/10.1021/ef300762z
  14. Shi, F., Hammoud, M., and Thompson, L. T., "Selective Adsorption of Dibenzothiophene by Functionalized Metal Organic Framework Sorbents," Appl. Catal. B, 103, 161-265 (2011).
  15. Subhan, F., and Liu, B. S., "Acidic Sites and Deep Desulfurization Performance of Nickel Supported Mesoporous AlMCM-41 Sorbents," Chem. Eng. J., 178, 69-77 (2011). https://doi.org/10.1016/j.cej.2011.10.013
  16. Shahadat Hussain, A. H. M., and Tatarchuk, B. J., "Adsorptive Desulfurization of Jet and Diesel Fuels Using Ag/TiOx-$Al_2O_3$ and Ag/TiOx-$SiO_2$ Adsorbents," Fuel, 107, 465-473 (2013). https://doi.org/10.1016/j.fuel.2012.11.030
  17. Wang, L., Chen, Y., Du, L., Li, S., Cai, H., and Liu, W., "Nickel-heteropolyacids Supported on Silica Gel for Ultra-deep Desulfurization Assisted by Ultrasound and Ultraviolet," Fuel, 105, 353-357 (2013). https://doi.org/10.1016/j.fuel.2012.06.021
  18. Bu, J., Loh, G., Gwei, C. G., Dewiyanti, S., Tasrif, M., and Borgna, A., "Desulfurization of Diesel Fuels by Selective Adsorption on Activated Carbons: Competitive Adsorption of Polycyclic Aromatic Sulfur Heterocycles and Polycyclic Aromatic Hydrocarbons," Chem. Eng. J., 166, 207-217 (2011). https://doi.org/10.1016/j.cej.2010.10.063
  19. Xu, B., Bordiga, S., Prins, R., and van Bokhoven, J. A., "Effect of Framework Si/Al Ratio and Extra-framework Aluminum on the Catalytic of Y zeolite," Appl. Catal. A, 333, 245-253 (2007). https://doi.org/10.1016/j.apcata.2007.09.018
  20. Ma, X., Sprague, M., and Song, C., "Deep Desulfurization by Selective Adsorption over Nickel-Based Adsorbent for Fuel Cell Applications," Ind. Eng. Chem. Res., 44, 5678-5775 (2005).
  21. Song, C., "An Overview of New Approaches to Deep Desulfurization for Ultra-clean Gasoline, Diesel Fuel and Jet Fuel," Catal. Today, 86, 211-263 (2003). https://doi.org/10.1016/S0920-5861(03)00412-7

피인용 문헌

  1. Diesel Desulfurization Reactor Design for Fuel Cell by Computational Fluid Dynamics vol.21, pp.4, 2015, https://doi.org/10.7464/ksct.2015.21.4.229
  2. Design and analysis of a diesel processing unit for a molten carbonate fuel cell for auxiliary power unit applications vol.33, pp.12, 2016, https://doi.org/10.1007/s11814-016-0262-8
  3. 수치해석을 통한 탈황반응기용 촉매의 재생공정 분석 vol.23, pp.2, 2017, https://doi.org/10.7464/ksct.2017.23.2.140
  4. WOx/SBA-15 촉매와 과산화수소를 이용한 선박용 경유의 산화 탈황 연구 vol.55, pp.4, 2014, https://doi.org/10.9713/kcer.2017.55.4.567
  5. 탈황, 재생공정 및 흡착속도 추정을 포함한 디젤용 탈황반응기 설계 vol.55, pp.6, 2017, https://doi.org/10.9713/kcer.2017.55.6.874
  6. 디젤탈황 단위공정의 CFD 모델링을 포함한 연료전지 시스템 공정설계 및 최적화 vol.56, pp.3, 2018, https://doi.org/10.9713/kcer.2018.56.3.421