DOI QR코드

DOI QR Code

낮은 수소농도에서 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 스팀과 CO2에 대한 영향

Catalytic Performance for the Production of Synthetic Natural Gas (SNG) on the Commercial Catalyst in Low Hydrogen Concentration; Influence of Steam and CO2

  • 강석환 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김진호 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김효식 (고등기술연구원 플랜트엔지니어링센터) ;
  • 류재홍 (고등기술연구원 플랜트엔지니어링센터) ;
  • 정기진 (고등기술연구원 플랜트엔지니어링센터) ;
  • 유영돈 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김광준 (포스코)
  • Kang, Suk-Hwan (Plant Engineering Center, Institute for Advances Engineering) ;
  • Kim, Jin-Ho (Plant Engineering Center, Institute for Advances Engineering) ;
  • Kim, Hyo-Sik (Plant Engineering Center, Institute for Advances Engineering) ;
  • Ryu, Jae-Hong (Plant Engineering Center, Institute for Advances Engineering) ;
  • Jeong, Ki-Jin (Plant Engineering Center, Institute for Advances Engineering) ;
  • Yoo, Young-Don (Plant Engineering Center, Institute for Advances Engineering) ;
  • Kim, Kwang-Jun (POSCO Center)
  • 투고 : 2013.11.01
  • 심사 : 2013.12.16
  • 발행 : 2014.03.31

초록

본 연구에서는 합성천연가스(synthetic natural gas, SNG)를 생산하기 위한 공정 개발을 위해 $H_2/CO$ 비가 낮은 합성가스를 이용하여 스팀과 함께 메탄화 반응을 수행하였다. 본 실험과 같은 조건에서는 수성가스 전환반응과 메탄화 반응이 동시에 일어나며, 스팀양이 적을 경우 촉매의 비활성화가 발생할 수 있다. 때문에, 스팀 양에 대한 반응특성을 수행하였으며, 더불어 고농도의 $CO_2$가 함유된 합성가스에 대한 메탄화 반응특성도 함께 고찰하였다. 그 결과, 스팀의 공급으로 인하여 촉매 층내의 온도를 낮출 수 있었으며, 메탄화 반응과 수성가스전환반응이 동시에 일어났음을 확인할 수 있었다. 고농도의 $CO_2$가 함유된 합성가스의 메탄화 반응에서는 조금 낮은 메탄 수율을 보였지만, 장기운전(1,000 h) 결과로부터 본 연구에서 수행한 합성가스의 조건을 SNG 공정에 적용이 가능할 것으로 확인되었다.

In this work, we performed the methanation with steam and synthesis gas of a low $H_2/CO$ ratio to develop a process for producing SNG (synthetic natural gas). In this experiment conditions, the water gas shift reaction and the methanation reaction take place at the same time, and insufficient supply of steam might cause the deactivation of the catalyst. Therefore, the reaction characteristics with the amount of steam was performed, and the methanation on syngas containing $CO_2$ of the high concentration were studied. As a result, the temperature in the catalyst bed decreased by the supply of steam, and the methanation and the water gas shift reaction occurred at the same time. Although methane yield slightly decreased at the methanation using syngas containing $CO_2$ of the high concentration, the long-term operation (1,000 h) in the experimental conditions of this study indicates that this condition is suitable for the new commercial scale SNG process.

키워드

참고문헌

  1. Yoo, Y. D., Kim, S. H., Yun Y., and Jin, K. T.. "Conversion Technology from Coal to Synthetic Natural Gas," KIC News, 12(3), 38-57 (2009).
  2. Ding, Y., Han W., Chai Q., Yang S., and Shen W., "Coal-based Synthetic Natural Gas (SNG): A Solution to China's Energy Security and $CO_2$ Reduction?," Energy Policy, 55, 445-453 (2013). https://doi.org/10.1016/j.enpol.2012.12.030
  3. GPGP, "Practical Experience Gained during the First Twenty Years of Operation of the Great Plains Gasification Plant and Implications for Future Projects," Technical Report, Dakota Gasification Company Prepared for US Department of Energy -Office of Fossil Energy; 2006.
  4. Keeler, C., and Lynch, T., "POSCO Gwangyang Project for Substitute Natural Gas (SNG)," Gasification Technologies Conference Washington, DC, November (2010).
  5. Nagase, S., Takami, S., Hirayama, A., and Hirai, Y., "Development of a High Efficiency Substitute Natural Gas Production Process," Catal. Today, 45(1-4), 393-397 (1998). https://doi.org/10.1016/S0920-5861(98)00273-9
  6. Kopyscinski, J., Schildhauer, T. J., and Biollaz, S. M. A., "Production of Synthetic Natural Gas (SNG) from Coal and Dry Biomass A Technology Review from 1950 to 2009," Fuel, 89(8), 1763-1783 (2010). https://doi.org/10.1016/j.fuel.2010.01.027
  7. Haldor Topsoe, "From Coal to Substitute Natural Gas Using TREMP," Technical Report, Haldor Topsoe, 2008.
  8. Kim, J. H., Kang, S. H., Ryu, J. H., Lee, S. K., Kim, S. H., Kim, M. H., Lee, D. Y., Yoo, Y. D., Byun, C. D., and Lim, H. J., "Operating Characteristics of 1 $Nm^3/h$ Scale Synthetic Natural Gas (SNG) Synthetic Systems," Korean Chem. Eng. Res., 49(4), 491-497 (2011). https://doi.org/10.9713/kcer.2011.49.4.491
  9. Kim, S. H., Yoo, Y. D., Kang, S. H., Ryu, J. H., Kim, J. H., Kim, M. H., Koh, D. J., Lee, H. J., Kim, K. J., and Kim, H. T., "Operating Characteristics of a 0.25 MW Methanation Pilot Plant with Isothermal Reactor and Adiabatic Reactor," Clean Technol., 19(2), 156-164 (2013). https://doi.org/10.7464/ksct.2013.19.2.156
  10. Cortes, C. G., Tzimas, E., and Peteves, S. D., "Technologies for Coal based Hydrogen and Electricity Co-production Power Plants with $CO_2$ Capture," JRC Scientific and Technical Reports, EUR 23661 EN, 2009.
  11. Hoehlein, B., Menzer, R., and Range, J., "High Temperature Methanation in the Long-distance Nuclear Energy Transport System," Appl. Catal., 1(3-4), 125-139 (1981). https://doi.org/10.1016/0166-9834(81)80001-2
  12. Vitasari, C. R., Jurascik, M., and Ptasinski, K. J., "Exergy Analysis of Biomass-to-synthetic Natural Gas (SNG) Process via Indirect Gasification of Various Biomass Feedstock," Energy, 36(6), 3825-3837 (2011). https://doi.org/10.1016/j.energy.2010.09.026
  13. Kim, J. H., Kang, S. H., Young D. Y., Baik, J. H., and Koh, D. J., "Methanation for SNG Production at Low $H_2$/CO Ratio; $H_2O$ Effect," Theories Appl. Chem. Eng., 17(2), 1688 (2011).
  14. Baik, J. H., Yoo, Y. D., Kang, S. H., Koh, D. J., Kim, J. H., Kim, S. H., and Ryu, J. H., "Apparatus and Method for Producing Synthetic Natural Gas Using Synthesis Gas of Low $H_2$/CO Ratio," KR. Patent No. 1020120153905 (2012).

피인용 문헌

  1. 고농도 메탄의 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 운전조건에 대한 영향 vol.24, pp.2, 2014, https://doi.org/10.7464/ksct.2018.24.2.099
  2. 파일럿 규모의 공정에서 CO2가 함유된 합성가스로부터 합성천연가스(SNG) 생산 vol.57, pp.3, 2014, https://doi.org/10.9713/kcer.2019.57.3.420