DOI QR코드

DOI QR Code

고로슬래그 미분말 치환율에 따른 프리캐스트 철근콘크리트 보의 전단거동 평가

Evaluation of Shear Behavior of Precast RC Beams According to Replacement Ratio of Ground Granulated Blast Furnace Slag

  • 정찬유 (공주대학교 건축공학과) ;
  • 김영식 ((주)에이스원테크 기업부설연구소) ;
  • 이진섭 (삼표이앤씨(주) 기술연구소) ;
  • 김상우 (공주대학교 건축공학과) ;
  • 김길희 (공주대학교 건축공학과)
  • 투고 : 2013.10.21
  • 심사 : 2013.11.20
  • 발행 : 2014.03.30

초록

이 연구에서는 고로슬래그 미분말을 사용한 프리캐스트 보의 전단성능에 대하여 평가하였다. 실험체는 고로슬래그 미분말 치환율에 따라 총 4체의 실험체를 제작하였다. 모든 실험체는 전단경간비 2.5, 보의 폭 200mm, 유효깊이 300mm이며, 3점 가력을 받는 단순보로 계획하였다. 또한 이 연구에서는 실험체의 전단강도를 예측하기 위하여 기존 전단강도 예측식을 이용하여 실험결과와 비교하였으며, 총 89개의 기존 전단 실험결과를 이용하여 실험결과와 비교 분석하였다. 실험결과, 고로슬래그 미분말을 치환한 실험체는 포틀랜드 시멘트만을 사용한 실험체와 비교분석한 결과 유사한 전단성능을 나타내었다.

This study evaluates the shear performance of precast beams with ground granulated blast furnace slag. A total of four specimens according to replacement ratio of ground granulated blast furnace slag. The specimens under three loading points had a shear span-to-depth ratio of 2.5, and a rectangular section with a width of 200mm and a effect depth of 300 mm. In this study, existing equations were used for predicting the shear strength of the specimens. The shear strength by existing equations was compared with those of 89 reinforced concrete beams without shear reinforcement. It can be shown from experimental results that all specimens with ground granulated blast furnace slag showed a similar shear strength as compared with the specimen with portland cements alone.

키워드

참고문헌

  1. ACI Committee 318 (2011), Building Code Requirements for Structural Concrete (ACI 318-11), American Concrete Institute, Detroit, 473.
  2. Comite Euro-International du Beton (CEB) (1990), CEB-FIP Model Code 1990, 145-240.
  3. Elzanaty, A. H., Nilson, A. H., and Slate, F. O. (1986), Shear Capacity of Reinforced Concrete Beams Using High -Strength Concrete, ACI Structural Journal, 83(2), 290-296.
  4. Ghannoum, W. M. (1990), Size Effect on Shear Strength of Reinforced Concrete Beams, Mcgill University, 230.
  5. JSCE (1986), Standard Specification for Design and Construction of Concrete Structures, Part 1 (Design), 244.
  6. Kani, G. N. J. (1967), How Safe Are Our Large Reinforced Concrete beams?, ACI Journal Proceedings, 64(3), 128-141.
  7. Korean Standards Association (2003), Method of tensile test for metallic materials, Korean Standards Association, 7 (in Korean).
  8. Korean Standards Association (2010), Standard test method for compressive strength of concrete, Korean Standards Association, 6 (in Korean).
  9. Krefeld, W. J., and Thurston, C. W. (1966), Studies of The Shear and Diagonal Tension Strength of Simply Supported Reinforced Concrete Beams, ACI Structural Journal, 63(4), 451-476.
  10. Lee, S. S., Won, C., Kim, D. S., and Park, S. J. (2000), A Study on the Engineering Properties of Concrete Using Blast-furnace Slag Powder, Journal of the Korea Concrete Institute, 12(4), 49-58 (in Korean).
  11. Mphonde, A. G., and Frantz, G. C. (1984), Shear Tests of High-and Low-Strength Concrete Beams Without Stirrups, ACI Structural Journal, 81(4), 350-357.
  12. Shin, K. S., and Choi, L. (2003), About the Rightness of Using Blast-Furnace Slag Fine Powder as Admixture in Ready-Mixed Concrete Industry, Magazine of the Korea Concrete Institute, 15(2), 8-12 (in Korean).
  13. Sneed, L. H., and Ramirez, J. A. (2010), Influence of Effective Depth on Shear Strength of Concrete Beams-Experimental Study, ACI Structural Journal, 107(5), 554-562.
  14. Walraven, J., and Lehwalter, N. (1994), Size Effects in Short Beams Loaded in Shear, ACI Structural Journal, 91(5), 585-593.
  15. Zarzris, P. D., and Papadakis, G. Ch. (2001), Diagonal Shear Failure and Size Effect in RC Beams without Web Reinforcement, Journal of Structural Engineering, ASCE, 127(7), 733-742. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(733)
  16. Zsutty, T. C. (1968), Beam Shear Strength Prediction by Analysis of Existing Data, ACI Structural Journal, 65(11), 943-951.

피인용 문헌

  1. Prediction of shear strength of reinforced concrete beams without shear reinforcement considering bond action of longitudinal reinforcements 2017, https://doi.org/10.1177/1369433217706778