DOI QR코드

DOI QR Code

CMOS ROIC for MEMS Acceleration Sensor

MEMS 가속도센서를 위한 CMOS Readout 회로

  • Yoon, Eun-Jung (Dept. of Electronics Engineering, Incheon National University) ;
  • Park, Jong-Tae (Dept. of Electronics Engineering, Incheon National University) ;
  • Yu, Chong-Gun (Dept. of Electronics Engineering, Incheon National University)
  • Received : 2014.02.10
  • Accepted : 2014.03.18
  • Published : 2014.03.31

Abstract

This paper presents a CMOS readout circuit for MEMS(Micro Electro Mechanical System) acceleration sensors. It consists of a MEMS accelerometer, a capacitance to voltage converter(CVC) and a second-order switched-capacitor ${\Sigma}{\Delta}$ modulator. Correlated-double-sampling(CDS) and chopper-stabilization(CHS) techniques are used in the CVC and ${\Sigma}{\Delta}$ modulator to reduce the low-frequency noise and DC offset. The sensitivity of the designed CVC is 150mV/g and its non-linearity is 0.15%. The duty cycle of the designed ${\Sigma}{\Delta}$ modulator output increases about 10% when the input voltage amplitude increases by 100mV, and the modulator's non-linearity is 0.45%. The total sensitivity is 150mV/g and the power consumption is 5.6mW. The proposed circuit is designed in a 0.35um CMOS process with a supply voltage of 3.3V and a operating frequency of 2MHz. The size of the designed chip including PADs is $0.96mm{\times}0.85mm$.

본 논문에서는 MEMS(Micro Electro Mechanical System) 가속도센서를 위한 CMOS readout 회로를 설계하였다. 설계된 CMOS readout 회로는 MEMS 가속도 센서, 커패시턴스-전압 변환기(CVC), 그리고 2차 스위치드 커패시터 ${\Sigma}{\Delta}$ 변조기로 구성된다. 이들 회로에는 저주파 잡음과 오프셋을 감소시키기 위한 correlated-double-sampling(CDS)와 chopper-stabilization(CHS) 기법이 적용되었다. 설계 결과 CVC는 150mV/g의 민감도와 0.15%의 비선형성을 갖는다. 설계된 ${\Sigma}{\Delta}$ 변조기는 입력전압 진폭이 100mV가 증가할 때, 출력의 듀티 싸이클은 10%씩 증가하며, 0.45%의 비선형성을 갖는다. 전체 회로의 민감도는 150mV/g이며, 전력소모는 5.6mW이다. 제안된 회로는 CMOS 0.35um 공정을 이용하여 설계하였고, 공급 전압은 3.3V이며, 동작 주파수는 2MHz이다. 설계된 칩의 크기는 PAD를 포함하여 $0.96mm{\times}0.85mm$이다.

Keywords

References

  1. H.-S. Park, "Technology of an accelerometer for portable electronic devices," National IT Industry Promotion Agency, 2007.
  2. N. Yazdi, H. Kulah, K. Najafi, "Precision readout circuits for capacitive microaccelerometers," Proceedings of IEEE Sensors, pp 28 - 31, 2004.
  3. K. Xiaofei,"A fully-differential Chopper-Stabilized Sigma-Delta Interface for Micro Accelerometer," ICMET, pp 726 - 729, 2010.
  4. C,-P, Huang, R. Chen, "Integration and implementation of CMOS-MEMS accelerometer and capacitive sensing circuits," 2011 IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp 543 - 546, 2011.
  5. T.-T. Zhang. H.-J. Li, J.-Q. Huang, M. Zhao, "An offset-compensated switched-capacitor interface circuit for closed-loop MEMS capacitive accelerometer," 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology, pp 1-3, 2012.
  6. Y.-C. Liu, M.-H. Tsai, S.-S. Li and W. Fang, "A fully-differential, multiplex-sensing interface circuit monolithically integrated with tri-axis pure oxide capacitive CMOS-MEMS accelerometers," The 17th International Conference on Solid-State Sensors, Actuators and Microsystems 2013 Transducers & Eurosensors XXVI I , pp 610-613, 2013.
  7. I. Zeimpekis, I. Sari, M. Kraft, "Characterization of a Mechanical Motion Amplifier Applied to a MEMS Accelerometer," Journal of Microelectromechanical Systems, vol. 21, no. 5, pp 1032-1042, 2012. https://doi.org/10.1109/JMEMS.2012.2196491
  8. S. Reddy, "Design of Interface Circuit for Differential Capacitance Measurement," Master of Science (by Research) in VLSI & Embedded Systems, pp 55-57, Sep. 2011
  9. N.-G. Cho, "Principle and trend of a MEMS accelerometer," KETI, 2006.
  10. M. Haris, H. W Qu, "A CMOS-MEMS piezoresistive accelerometer with large proof mass," IEEE International Conference on NEMS, pp 309 - 312, 2010.
  11. X. Y. Tan, T. Mu, C. C Zhen, H. R. Li, X. W Liu, "A zero-offset auto-correction circuit for piezoresistive micromachined accelerometer," AISOMT, pp 255 - 258, 2011.
  12. S. Tanaka, S Nishifuji, "On-line sensing system of dynamic ship's attitude by use of servo-type accelerometers," IEEE Journal of Oceanic Engineering, pp 339 - 346, 1995.
  13. H. Saito, T. Yokoyama, S. Uchiyama, "Seafloor Stability Monitoring by Displacements Calculated from Acceleration Waveforms Obtained by a 3-Component Servo-Accelerometer System," OCEANS, 2006.