DOI QR코드

DOI QR Code

A Speed-up Method of HOG Pedestrian Detector in Advanced SIMD Architecture

Advanced SIMD 아키텍처에서의 HOG 보행자 검출기 고속화 방법

  • Received : 2014.01.27
  • Accepted : 2014.03.04
  • Published : 2014.03.31

Abstract

A pedestrian detector can be applied for various purposes such as monitoring or counting the number of people in some place, or detecting the people plunging in the driveway. There was a lot of related research. But, the detection speed is slow in embedded system because of the limited computing power. An algorithm for fast pedestrian detector using HOG in ARM SIMD architecture is presented in this paper. There is a way to quickly remove the background of image and to improve the detection speed using NEON parallel technique. When we tested with INRIA Person Dataset, the proposed pedestrian detector improves the speed by 3.01 times than previous one.

보행자 검출기는 보안이 필요한 곳에서 모니터링을 하거나 특정 장소를 드나드는 사람의 수를 셀 때, 운전 중 차도에 뛰어드는 사람을 감지할 때 등 상황에 따라 여러 목적으로 응용될 수 있다. 이와 관련한 연구는 많이 진행되어 왔지만, 임베디드 시스템에서는 제한된 컴퓨팅 능력으로 인해 검출 속도가 느리다는 문제가 있다. 본 논문에서는 입력 영상에서 배경 부분을 빠르게 제거하여 검출 속도를 향상하는 방법과 ARM SIMD 아키텍처에서 NEON 병렬화 기법을 이용하여 검출 속도를 향상하는 방법을 제시한다. 제시한 방법으로 구현한 검출기는 INRIA Person Dataset을 이용하여 테스트한 결과 기존에 비해 3.01배의 향상된 속도를 나타냈다.

Keywords

References

  1. Navneet Dalal, Bill Triggs, "Histogram of Oriented Gradients for Human Detection", Proceedings of the IEEE, Computer Society Conference on Computer Vision and Pattern Recognition, vol.1, pp.886-893, 2005.
  2. Qiang Zhu, Shi Avidan, Mei-Chen Yeh, Kwang-Ting Cheng, "Fast Human Detection Using a Cascade of Histograms of Oriented Gradients", Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, pp.1491-1498, 2006.
  3. Christopher J.C Burges, "A Tutorial on Support Vector Machines for Pattern Recognition", Journal, Data Mining and Knowledge Discovery, vol.2, pp.121-167, June, 1998. https://doi.org/10.1023/A:1009715923555
  4. ARM, "RealView Compilation Tools v4.0 - NEON Compiler", http://infocenter.arm.com/. 2009.
  5. James Kennedy, Russell Eberhart, "Particle Swarm Optimization", Proceedings of the IEEE, Conference on Neural Networks, vol.4, pp.1942-1948, 1995.
  6. Renato A. Krohling, "Gaussian Swarm: A Novel Particle Swarm Optimization Algorithm", Proceedings of the IEEE, Conference on Cybernetics and Intelligent System, vol.1, pp.372-376, December, 2004.
  7. Sung-Tae An, Jeong-Jung Kim, Ju-Jang Lee, "SDAT: Simultaneous Detection and Tracking of Humans using Particle Swarm Optimization", Proceedings of the IEEE, International Conference on Mechatronics and Automation, pp.483-488, August, 2011.
  8. Guoqing Xu, Xiaocui Wu, "Real-time Pedestrian Detection Based on Edge Factor and Histogram of Oriented Gradient", Proceeding of the IEEE, International Conference on Information and Automation, pp.384-389, June, 2011.

Cited by

  1. A New Temperature Control System by PWM Control Method for Thermal Massage System vol.18, pp.3, 2014, https://doi.org/10.7471/ikeee.2014.18.3.409