Abstract
A pedestrian detector can be applied for various purposes such as monitoring or counting the number of people in some place, or detecting the people plunging in the driveway. There was a lot of related research. But, the detection speed is slow in embedded system because of the limited computing power. An algorithm for fast pedestrian detector using HOG in ARM SIMD architecture is presented in this paper. There is a way to quickly remove the background of image and to improve the detection speed using NEON parallel technique. When we tested with INRIA Person Dataset, the proposed pedestrian detector improves the speed by 3.01 times than previous one.
보행자 검출기는 보안이 필요한 곳에서 모니터링을 하거나 특정 장소를 드나드는 사람의 수를 셀 때, 운전 중 차도에 뛰어드는 사람을 감지할 때 등 상황에 따라 여러 목적으로 응용될 수 있다. 이와 관련한 연구는 많이 진행되어 왔지만, 임베디드 시스템에서는 제한된 컴퓨팅 능력으로 인해 검출 속도가 느리다는 문제가 있다. 본 논문에서는 입력 영상에서 배경 부분을 빠르게 제거하여 검출 속도를 향상하는 방법과 ARM SIMD 아키텍처에서 NEON 병렬화 기법을 이용하여 검출 속도를 향상하는 방법을 제시한다. 제시한 방법으로 구현한 검출기는 INRIA Person Dataset을 이용하여 테스트한 결과 기존에 비해 3.01배의 향상된 속도를 나타냈다.