DOI QR코드

DOI QR Code

High Efficient Viola-Jones Detection Framework for Real-Time Object Detection

실시간 물체 검출을 위한 고효율 Viola-Jones 검출 프레임워크

  • Received : 2013.12.10
  • Accepted : 2014.01.15
  • Published : 2014.03.31

Abstract

In this paper, we suggest an improved Viola-Jones detection framework for the efficient feature selection and the fast rejection method of the sub-window. Our object detector has low computational complexity because it rejects sub-windows until specific threshold. Owing to using same framework, detection performance is same with the existing Viola-Jones detector. We measure the number of average feature calculation about MIT-CMU test set. As a result of the experiment, the number of average feature calculation is reduced to 45.5% and the detection speed is improved about 58.5% compared with the previous algorithm.

본 연구에서는 기존의 Viola-Jones 검출 프레임워크를 개선하여 하나의 특징 당 더 높은 효율을 가지며 검출대상이 아닌 서브 윈도우들을 더 빠르게 제거하는 개선된 학습 알고리즘을 제안한다. 학습의 결과로 생성된 물체 검출기는 서브윈도우를 특정 임계값까지 빠르게 제거하기 때문에 서브윈도우당 계산수가 줄어든다. 기존의 Viola-Jones 물체 검출기와 동일한 프레임워크이므로 검출 성능에는 영향을 주지 않는다. MIT-CMU 테스트 집합에 대해서 서브윈도우당 특징 계산 횟수를 측정하였으며 기존 계산 횟수의 45.5%로 줄어들어 검출 속도가 약 58.5% 향상됨을 확인하였다.

Keywords

References

  1. Paul Viola, Michael J . J ones "Robust Real-Time Face Detection" International J ournal of Computer Vision, vol.57, no.2, pp.137-154, May. 2004 https://doi.org/10.1023/B:VISI.0000013087.49260.fb
  2. Ki-Yeong Park, Sun-Young Hwang "An Improved Normalization Method for Haar-like Features for Real-time Object Detection" The Korean Institute of Communications and Information Sciences, vol.36, no.8, pp.505-515, Aug. 2011 https://doi.org/10.7840/KICS.2011.36C.8.505
  3. Lienhart, R., Maydt, J . "An Extended Set of Haar-like Features for Rapid Object Detection" Image Processing. 2002. Proceedings. 2002 International Conference on, vol.1, no., pp.900-903, 2002
  4. Takeshi Mita, Toshimitsu Kaneko, Osamu Hori "J oint Haar-like Features for Face Detection" Tenth IEEE International Conference on, vol.2, no., pp.1619-1626, Oct. 2005
  5. Geovany A. Ramirez, Olac Fuentes "Multi-Pose Face Detection with Asymmetric Haar Features" Applications of Computer Vision, 2008. WACV 2008. IEEE Workshop on, vol., no., pp.1-6, J an. 2008
  6. Ammar W Mohemmed, Mengjie Zhang, Mark J ohnston "Particle Swarm Optimization Based Adaboost for Face Detection" Evolutionary Computation, 2009. CEC '09. IEEE Congress on, vol., no., pp.2494-2501, May. 2009
  7. Sung-Tae An, J eong-Jung Kim and Ju-J ang Lee "SDAT: Simultaneous Detection and Tracking of Humans using Particle Swarm Optimization" Mechatronics and Automation (ICMA), International Conference on, vol., no., pp.483-488, Aug. 2011
  8. Hong-Hee Kim, J ae-Heung Lee "An Efficient Face Detection Method Using Skin Color Information and Parallel Processing in Multi-Core SoC" Journal of IKEEE, vol.16, no.4, pp.375-381, Dec. 2012 https://doi.org/10.7471/ikeee.2012.16.4.375

Cited by

  1. A Study On Positioning Of Mouse Cursor Using Kinect Depth Camera vol.18, pp.4, 2014, https://doi.org/10.7471/ikeee.2014.18.4.478
  2. A New Temperature Control System by PWM Control Method for Thermal Massage System vol.18, pp.3, 2014, https://doi.org/10.7471/ikeee.2014.18.3.409
  3. Pedestrian Detection using RGB-D Information and Distance Transform vol.65, pp.1, 2016, https://doi.org/10.5370/KIEEP.2016.65.1.066