DOI QR코드

DOI QR Code

Mo:Na 두께에 따른 Cu(In,Ga)Se2 박막의 물성과 효율변화

The Physical Properties and Efficiencies of Cu(In,Ga)Se2 Thin Films Depending on the Mo:Na Thickness

  • 신윤학 (충북대학교 신소재공학과) ;
  • 김명한 (충북대학교 신소재공학과)
  • Shin, Younhak (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Kim, Myunghan (Department of Advanced Materials Engineering, Chungbuk National University)
  • 투고 : 2013.12.11
  • 심사 : 2014.01.28
  • 발행 : 2014.03.27

초록

To realize high-performance thin film solar cells, we prepared CIGS by the co-evaporation technique on both sodalime and Corning glass substrates. The structural and efficient properties were investigated by varying the thickness of the Mo:Na layer, where the total thickness of the back contact was fixed at 1${\mu}m$. As a result, when the Mo:Na thickness was 300 nm on soda-lime glass, the measured Na content was 0.28 %, the surface morphology was a plate-like compact structure, and the crystallinity by XRD showed a strong peak of (112) preferential orientation together with relatively intense (220) and (204) peaks as the secondary phases influenced crystal formation. In addition, the substrates on soda-lime glass effected the lowest surface roughness of 2.76 nm and the highest carrier density and short circuit current. Through the optimization of the Mo:Na layer, a solar conversion efficiency of 11.34% was achieved. When using the Corning glass, a rather low conversion efficiency of 9.59% was obtained. To determine the effects of the concentration of sodium and in order to develop a highefficiency solar cells, a very small amount of sodium was added to the soda lime glass substrate.

키워드

참고문헌

  1. K. Bouabid, A. Ihlal, A Manar, A. Outzourhit and E. L. Ameziane, Thin Solid Films, 488, 62 (2005). https://doi.org/10.1016/j.tsf.2005.04.111
  2. K. W. Mitchell, C. Eberspacher, J. Ermer and D. Pier, Proc. 20th IEEE Photovoltaic Specialists Conf., 1384, (1989).
  3. A. M. Gabor, J. R. Tuttle, M. A. Contreras, D. S Albin, A. Franz, D. W. Niles and R. Noufi, 12th European Photovoltaic Sol. Energy Conf., 1, (1994).
  4. S. Nakamura, S. Sugawara, A. Hashimoto, A. Yamamoto, Sol. Energy Mater. Sol. Cells, 50, 26 (1998).
  5. K. granath, M. bodegard and L. Stolt, Sol. Energy Mater. Sol. Cells, 60, 279 (2000). https://doi.org/10.1016/S0927-0248(99)00089-6
  6. M. Lammer, U. Klemm and M. Powalla, Thin Solid Films, 387, 33 (2001). https://doi.org/10.1016/S0040-6090(00)01712-0
  7. Raghu N. Bhattacharya, Arturo M. Fernandez, Sol. Energy Mater. Sol. Cells, 76, 335 (2003).
  8. C. J. Huang, T. H. Meen, M. Y. Lai, W. R. Chen, Sol. Energy Mater. Sol. Cells, 82(4), 557 (2004)
  9. W. K. Batchelor, I. L. Repins, J. Schaefer and M. E. Beck, Sol. Energy Mater. Sol. Cells, 83, 67 (2004). https://doi.org/10.1016/j.solmat.2003.10.005
  10. S. Chaisitsak, A. Yamada, M. Konagai, Jpn. J. Appl. Phys., 41(2), 507, (2002). https://doi.org/10.1143/JJAP.41.507
  11. J. H. Scofield, A. Duba, D. Albin, B. L. Ballard and P. K. Predecki, Thin Solid Films, 260, 26 (1995). https://doi.org/10.1016/0040-6090(94)06462-8
  12. R. J. Matson, J. E. Granata, S. E. Asher and M. R. Young, NREL, 25682, 6 (1998).