참고문헌
- Abdelwahid, E., Rice, D., Pelliniemi, L.J., and Jokinen, E. (2001). Overlapping and differential localization of Bmp-2, Bmp-4, Msx-2 and apoptosis in the endocardial cushion and adjacent tissues of the developing mouse heart. Cell Tissue Res. 305, 67-78. https://doi.org/10.1007/s004410100399
- Bauer, H., Lele, Z., Rauch, G.J., Geisler, R., and Hammerschmidt, M. (2001). The type I serine/threonine kinase receptor Alk8/Losta-fin is required for Bmp2b/7 signal transduction during dorsoventral patterning of the zebrafish embryo. Development 128, 849-858.
- Beets, K., Huylebroeck, D., Moya, I.M., Umans, L., and Zwijsen, A. (2013). Robustness in angiogenesis: notch and BMP shaping waves. Trends Genet. 29, 140-149. https://doi.org/10.1016/j.tig.2012.11.008
- Chocron, S., Verhoeven, M.C., Rentzsch, F., Hammerschmidt, M., and Bakkers, J. (2007). Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Dev. Biol. 305, 577-588. https://doi.org/10.1016/j.ydbio.2007.03.001
- Collery, R.F., and Link, B.A. (2011). Dynamic smad-mediated BMP signaling revealed through transgenic zebrafish. Dev. Dyn. 240, 712-722. https://doi.org/10.1002/dvdy.22567
- David, L., Feige, J.J., and Bailly, S. (2009). Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev. 20, 203-212. https://doi.org/10.1016/j.cytogfr.2009.05.001
- Dick, A., Meier, A., and Hammerschmidt, M. (1999). Smad1 and Smad5 have distinct roles during dorsoventral patterning of the zebrafish embryo. Dev. Dyn. 216, 285-298. https://doi.org/10.1002/(SICI)1097-0177(199911)216:3<285::AID-DVDY7>3.0.CO;2-L
- Dunworth, W.P., Cardona-Costa, J., Cagavi, E., Kim, J.D., Fischer, J.C., Meadows, S., Wang, Y., Cleaver, O., Qyang, Y., Ober, E. A., et al. (2013). Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos. Circ. Res. 114, 56-66.
-
Ehrlich, M., Horbelt, D., Marom, B., Knaus, P., and Henis, Y.I. (2011). Homomeric and heteromeric complexes among TGF-
$\beta$ and BMP receptors and their roles in signaling. Cell Signal. 23, 1424-1432. https://doi.org/10.1016/j.cellsig.2011.04.004 - Eisenberg, L.M., and Markwald, R.R. (1995). Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ. Res. 77, 1-6. https://doi.org/10.1161/01.RES.77.1.1
- Farnsworth, R.H., Karnezis, T., Shayan, R., Matsumoto, M., Nowell, C.J., Achen, M.G., and Stacker, S.A. (2011). A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth. Cancer Res. 71, 6547-6557. https://doi.org/10.1158/0008-5472.CAN-11-0200
- Finkenzeller, G., Hager, S., and Stark, G.B. (2012). Effects of bone morphogenetic protein 2 on human umbilical vein endothelial cells. Microvasc. Res. 84, 81-85. https://doi.org/10.1016/j.mvr.2012.03.010
- Guo, J., and Wu, G. (2012). The signaling and functions of heterodimeric bone morphogenetic proteins. Cytokine Growth Factor Rev. 23, 61-67. https://doi.org/10.1016/j.cytogfr.2012.02.001
- Hartung, A., Bitton-Worms, K., Rechtman, M.M., Wenzel, V., Boergermann, J.H., Hassel, S., Henis, Y.I., and Knaus, P. (2006). Different routes of bone morphogenic protein (BMP) receptor endocytosis influence BMP signaling. Mol. Cell. Biol. 26, 7791-7805. https://doi.org/10.1128/MCB.00022-06
- Kawabata, M., Imamura, T., and Miyazono, K. (1998). Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev. 9, 49-61. https://doi.org/10.1016/S1359-6101(97)00036-1
- Kim, J.D., Kang, H., Larrivee, B., Lee, M.Y., Mettlen, M., Schmid, S.L., Roman, B.L., Qyang, Y., Eichmann, A., and Jin, S.W. (2012). Context-dependent proangiogenic function of bone morphogenetic protein signaling is mediated by disabled homolog 2. Dev. Cell 23, 441-448. https://doi.org/10.1016/j.devcel.2012.07.007
- Kim, J.D., Kang, Y., Kim, J., Papangeli, I., Kang, H., Wu, J., Park, H., Nadelmann, E., Rockson, S.G., Chun, H.J., et al. (2013). Essential role of apelin signaling during lymphatic development in Zebrafish. Arterioscler. Thromb. Vasc. Biol. 34, 338-345.
-
Kinashi, H., Ito, Y., Mizuno, M., Suzuki, Y., Terabayashi, T., Nagura, F., Hattori, R., Matsukawa, Y., Mizuno, T., Noda, Y., et al. (2013). TGF-
$\beta1$ promotes lymphangiogenesis during peritoneal fibrosis. J. Am. Soc. Nephrol. 24, 1627-1642. https://doi.org/10.1681/ASN.2012030226 - Kondo, M. (2007). Bone morphogenetic proteins in the early development of zebrafish. FEBS J. 274, 2960-2967. https://doi.org/10.1111/j.1742-4658.2007.05838.x
- Larrivee, B., Prahst, C., Gordon, E., del Toro, R., Mathivet, T., Duarte, A., Simons, M., and Eichmann, A. (2012). ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev. Cell 22, 489-500. https://doi.org/10.1016/j.devcel.2012.02.005
- Levet, S., Ciais, D., Merdzhanova, G., Mallet, C., Zimmers, T.A., Lee, S.J., Navarro, F.P., Texier, I., Feige, J.J., Bailly, S., et al. (2013). Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood 122, 598-607. https://doi.org/10.1182/blood-2012-12-472142
- Little, S.C., and Mullins, M.C. (2009). Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat. Cell Biol. 11, 637-643. https://doi.org/10.1038/ncb1870
- McReynolds, L.J., Gupta, S., Figueroa, M.E., Mullins, M.C., and Evans, T. (2007). Smad1 and Smad5 differentially regulate embryonic hematopoiesis. Blood 110, 3881-3890. https://doi.org/10.1182/blood-2007-04-085753
- Miyazono, K., Kamiya, Y., and Morikawa, M. (2010). Bone morphogenetic protein receptors and signal transduction. J. Biochem. 147, 35-51. https://doi.org/10.1093/jb/mvp148
- Moya, I.M., Umans, L., Maas, E., Pereira, P.N., Beets, K., Francis, A., Sents, W., Robertson, E.J., Mummery, C.L., Huylebroeck, D., et al. (2012). Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. Dev. Cell 22, 501-514. https://doi.org/10.1016/j.devcel.2012.01.007
- Muller, F., Blader, P., Rastegar, S., Fischer, N., Knochel, W., and Strahle, U. (1999). Characterization of zebrafish smad1, smad2 and smad5: the amino-terminus of smad1 and smad5 is required for specific function in the embryo. Mech. Dev. 88, 73-88. https://doi.org/10.1016/S0925-4773(99)00173-2
- Roman, B.L., Pham, V.N., Lawson, N.D., Kulik, M., Childs, S., Lekven, A.C., Garrity, D.M., Moon, R.T., Fishman, M.C., Lechleider, R.J., et al. (2002). Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129, 3009-3019.
- Schmitt, C.E., Woolls, M.J., and Jin, S.W. (2013). Mutant-specific gene expression profiling identifies SRY-related HMG box 11b (SOX11b) as a novel regulator of vascular development in zebrafish. Mol. Cells 35, 166-172. https://doi.org/10.1007/s10059-013-2307-8
- Sieber, C., Kopf, J., Hiepen, C., and Knaus, P. (2009). Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev. 20, 343-355. https://doi.org/10.1016/j.cytogfr.2009.10.007
-
Wakefield, L.M., and Hill, C.S. (2013). Beyond
$TGF\beta$ : roles of other$TGF\beta$ superfamily members in cancer. Nat. Rev. Cancer 13, 328-341. https://doi.org/10.1038/nrc3500 - Wiley, D.M., and Jin, S.W. (2011). Bone Morphogenetic Protein functions as a context-dependent angiogenic cue in vertebrates. Semin. Cell Dev. Biol. 22, 1012-1018. https://doi.org/10.1016/j.semcdb.2011.10.005
- Wiley, D.M., Kim, J.D., Hao, J., Hong, C.C., Bautch, V.L., and Jin, S.W. (2011). Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat. Cell Biol. 13, 686-692. https://doi.org/10.1038/ncb2232
- Yaniv, K., Isogai, S., Castranova, D., Dye, L., Hitomi, J., and Weinstein, B.M. (2006). Live imaging of lymphatic development in the zebrafish. Nat. Med. 12, 711-716. https://doi.org/10.1038/nm1427
- Yoshimatsu, Y., Lee, Y.G., Akatsu, Y., Taguchi, L., Suzuki, H.I., Cunha, S.I., Maruyama, K., Suzuki, Y., Yamazaki, T., Katsura, A., et al. (2013). Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1 during development and cancer progression. Proc. Natl. Acad. Sci. USA 110, 18940-18945. https://doi.org/10.1073/pnas.1310479110
피인용 문헌
- BMP signaling in vascular biology and dysfunction vol.27, 2016, https://doi.org/10.1016/j.cytogfr.2015.12.005
- A Tale of Two Models: Mouse and Zebrafish as Complementary Models for Lymphatic Studies vol.37, pp.7, 2014, https://doi.org/10.14348/molcells.2014.0108
- Zebrafish Crip2 Plays a Critical Role in Atrioventricular Valve Development by Downregulating the Expression of ECM Genes in the Endocardial Cushion vol.37, pp.5, 2014, https://doi.org/10.14348/molcells.2014.0072
- Fipronil-induced enantioselective developmental toxicity to zebrafish embryo-larvae involves changes in DNA methylation vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-02255-5
- Development of the lymphatic system: new questions and paradigms vol.143, pp.6, 2016, https://doi.org/10.1242/dev.132431
- Bone Morphogenetic Proteins in Vascular Homeostasis and Disease vol.10, pp.2, 2017, https://doi.org/10.1101/cshperspect.a031989
- Venous identity requires BMP signalling through ALK3 vol.10, pp.1, 2019, https://doi.org/10.1038/s41467-019-08315-w
- Identification of a rare BMP pathway mutation in a non-syndromic human brain arteriovenous malformation via exome sequencing vol.5, pp.None, 2018, https://doi.org/10.1038/hgv.2018.1
- Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem vol.12, pp.2, 2019, https://doi.org/10.1186/s12920-019-0492-9
- The BMP Pathway in Blood Vessel and Lymphatic Vessel Biology vol.22, pp.12, 2014, https://doi.org/10.3390/ijms22126364