References
- Acosta, J.C., O'Loghlen, A., Banito, A., Guijarro, M.V., Augert, A., Raguz, S., Fumagalli, M., Da Costa, M., Brown, C., Popov, N., et al. (2008). Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence. Cell 133, 1006-1018. https://doi.org/10.1016/j.cell.2008.03.038
- Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-511. https://doi.org/10.1038/35000501
-
Annunziata, C.M., Davis, R.E., Demchenko, Y., Bellamy, W., Gabrea, A., Zhan, F., Lenz, G., Hanamura, I., Wright, G., Xiao, W., et al. (2007). Frequent engagement of the classical and alternative NF-
$\kappa{B}$ pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115-130. https://doi.org/10.1016/j.ccr.2007.07.004 -
Arkan, M.C., and Greten, F.R. (2011). IKK- and NF-
$\kappa{B}$ -mediated functions in carcinogenesis. Curr. Top. Microbiol. Immunol. 349, 159-169. - Baldwin, A.S. (2001). Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J. Clin. Invest. 107, 241-246. https://doi.org/10.1172/JCI11991
- Basseres, D.S., and Baldwin, A.S. (2006). Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25, 6817-6830. https://doi.org/10.1038/sj.onc.1209942
-
Basseres, D.S., Ebbs, A., Levantini, E., and Baldwin, A.S. (2010). Requirement of the NF-
$\kappa{B}$ subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res. 70, 3537-354. https://doi.org/10.1158/0008-5472.CAN-09-4290 -
Ben-Neriah, Y., and Karin, M. (2011). Inflammation meets cancer, with NF-
$\kappa{B}$ as the matchmaker. Nat. Immunol. 12, 715-723. https://doi.org/10.1038/ni.2060 - Bonizzi, G., and Karin, M. (2004). The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280-288. https://doi.org/10.1016/j.it.2004.03.008
- Braig, M., Lee, S., Loddenkemper, C., Rudolph, C., Peters, A.H., Schlegelberger, B., Stein, H., Dorken, B., Jenuwein, T., and Schmitt, C.A. (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660-665. https://doi.org/10.1038/nature03841
-
Calado, D.P., Zhang, B., Srinivasan, L., Sasaki, Y., Seagal, J., Unitt, C., Rodig, S., Kutok, J., Tarakhovsky, A., Schmidt-Supprian, M., et al. (2010). Constitutive canonical NF-
$\kappa{B}$ activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell-like diffuse large cell lymphoma. Cancer Cell 18, 580-589. https://doi.org/10.1016/j.ccr.2010.11.024 - Catz, S.D., and Johnson, J.L. (2001). Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20, 7342-7351. https://doi.org/10.1038/sj.onc.1204926
- Chang, B.D., Broude, E.V., Dokmanovic, M., Zhu, H., Ruth, A., Xuan, Y., Kandel, ES., Lausch, E., Christov, K., and Roninson, I.B. (1999). A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 59, 3761-3767.
- Compagno, M., Lim, W.K., Grunn, A., Nandula, S.V., Brahmachary, M., Shen, Q., Bertoni, F., Ponzoni, M., Scandurra, M., Califano, A., et al. (2009). Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459, 717-721. https://doi.org/10.1038/nature07968
- Coppe, J.P., Patil, C.K., Rodier, F., Sun, Y., Munoz, D.P., Goldstein, J., Nelson, P.S., Desprez, P.Y., and Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853-2868.
- Coppe, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144
- Davis, R.E., Brown, K.D., Siebenlist, U., and Staudt, L.M. (2001). Constitutive nuclear factor kappa B activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 194, 1861-1874. https://doi.org/10.1084/jem.194.12.1861
-
Franzoso, G., Bours, V., Park, S., Tomita-Yamaguchi, M., Kelly, K., and Siebenlist, U. (1992). The candidate oncoprotein Bcl-3 is an antagonist of p50/NF-
$\kappa{B}$ -mediated inhibition. Nature 359, 339-342. https://doi.org/10.1038/359339a0 - Guttridge, D.C., Albanese, C., Reuther, J.Y., Pestell, R.G., and Baldwin, A.S. Jr. (1999). NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell. Biol. 19, 5785-5799. https://doi.org/10.1128/MCB.19.8.5785
- Grivennikov, S., Greten, F.R., and Karin, M. (2010). Immunity, inflammation, and cancer. Cell 140, 883-899. https://doi.org/10.1016/j.cell.2010.01.025
- Hayden, M.S., and Ghosh, S. (2004). Signaling to NF-kappaB. Genes Dev. 18, 2195-2224. https://doi.org/10.1101/gad.1228704
- Hayden, M.S., and Ghosh, S. (2008). Shared principles in NF-kappaB signaling. Cell 132, 344-362. https://doi.org/10.1016/j.cell.2008.01.020
-
Heyninck, K., and Beyaert, R. (2005). A20 inhibits NF-
$\kappa{B}$ activation by dual ubiquitin-editing functions. Trends Biochem. Sci. 30, 1-4. https://doi.org/10.1016/j.tibs.2004.11.001 - Huang, J.Z., Sanger, W.G., Greiner, T.C., Staudt, L.M., Weisenburger, D.D., Pickering, D.L., Lynch, J.C., Armitage, J.O., Warnke, R.A., Alizadeh, A.A., et al. (2002). The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood 99, 2285-2290. https://doi.org/10.1182/blood.V99.7.2285
- Inokuchi, S., Aoyama, T., Miura, K., Osterreicher, C.H., Kodama, Y., Miyai, K., Akira, S., Brenner, D.A., and Seki, E. (2010). Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc. Natl. Acad. Sci. USA 107, 844-849. https://doi.org/10.1073/pnas.0909781107
- Iqbal, J., Sanger, W.G., Horsman, D.E., Rosenwald, A., Pickering, D.L., Dave, B., Dave, S., Xiao, L., Cao, K., Zhu, Q., et al. (2004). BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am. J. Pathol. 165, 159-166. https://doi.org/10.1016/S0002-9440(10)63284-1
- Kaltschmidt, B., Kaltschmidt, C., Hofmann, T.G., Hehner, S.P., Droge, W., and Schmitz, M.L. (2000). The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. Eur. J. Biochem. 267, 3828-3835. https://doi.org/10.1046/j.1432-1327.2000.01421.x
- Kasibhatla, S., Genestier, L., and Green, D.R. (1999). Regulation of fas-ligand expression during activation-induced cell death in T lymphocytes via nuclear factor kappaB. J. Biol. Chem. 274, 987-992. https://doi.org/10.1074/jbc.274.2.987
-
Keats, J.J., Fonseca, R., Chesi, M., Schop, R., Baker, A., Chng, W.J., Van Wier, S., Tiedemann, R., Shi, C.X., Sebag, M., et al. (2007). Promiscuous mutations activate the noncanonical NF-
$\kappa{B}$ pathway in multiple myeloma. Cancer Cell 12, 131-144. https://doi.org/10.1016/j.ccr.2007.07.003 - Keller, U., Huber, J., Nilsson, J.A., Fallahi, M., Hall, M.A., Peschel, C., and Cleveland, J.L. (2010). Myc suppression of Nfkb2 accelerates lymphomagenesis. BMC Cancer 10, 348. https://doi.org/10.1186/1471-2407-10-348
- Kortlever, R.M., Higgins, P.J., and Bernards, R. (2006). Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. 8, 877-884. https://doi.org/10.1038/ncb1448
- Kuilman, T., and Peeper, D.S. (2009). Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81-94. https://doi.org/10.1038/nrc2560
- Kuilman, T., Michaloglou, C., Vredeveld, L.C., Douma, S., van Doorn, R., Desmet, C.J., Aarden, L.A., Mooi, W.J., and Peeper, D.S. (2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019-1031. https://doi.org/10.1016/j.cell.2008.03.039
- Kuilman, T., Michaloglou, C., Mooi, W.J., and Peeper, D.S. (2010). The essence of senescence. Genes Dev. 24, 2463-2479. https://doi.org/10.1101/gad.1971610
- Lam, L.T., Davis, R.E., Pierce, J., Hepperle, M., Xu, Y., Hottelet, M., Nong, Y., Wen, D., Adams, J., Dang, L., et al. (2005). Small molecule inhibitors of IkappaB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin. Cancer Res. 11, 28-40.
- Lenz, G., Davis, R.E., Ngo, V.N., Lam, L., George, T.C., Wright, G. W., Dave, S.S., Zhao, H., Xu, W., Rosenwald, A., et al. (2008a). Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319, 1676-1679. https://doi.org/10.1126/science.1153629
- Lenz, G., Wright, G., Dave, S.S., Xiao, W., Powell, J., Zhao, H., Xu, W., Tan, B., Goldschmidt, N., Iqbal, J., et al. (2008b). Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 359, 2313-232. https://doi.org/10.1056/NEJMoa0802885
-
Lim, K.H., Yang, Y., and Staudt, L.M. (2012). Pathogenetic importance and therapeutic implications of NF-
$\kappa{B}$ in lymphoid malignancies. Immunol. Rev. 246, 359-378. https://doi.org/10.1111/j.1600-065X.2012.01105.x - Luedde, T., Beraza, N., Kotsikoris, V., van Loo, G., Nenci, A., De Vos, R., Roskams, T., Trautwein, C., and Pasparakis, M. (2007). Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11, 119-132. https://doi.org/10.1016/j.ccr.2006.12.016
- Maeda, S., Kamata, H., Luo, J.L., Leffert, H., and Karin, M. (2005). IKK couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977-990. https://doi.org/10.1016/j.cell.2005.04.014
- Martin, A.G., Trama, J., Crighton, D., Ryan, K.M., and Fearnhead, H.O. (2009). Activation of p73 and induction of Noxa by DNA damage requires NF-kappa B. Aging 1, 335-349. https://doi.org/10.18632/aging.100026
-
Neri, A., Chang, C.C., Lombardi, L., Salina, M., Corradini, P., Maiolo, AT., Chaganti, R.S., and Dalla-Favera, R. (1991). B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-
$\kappa{B}$ p50. Cell 67, 1075-1087. https://doi.org/10.1016/0092-8674(91)90285-7 - Ngo, V.N., Davis, R.E., Lamy, L., Yu, X., Zhao, H., Lenz, G., Lam, L.T., Dave, S., Yang, L., Powell, J., et al. (2006). A loss-offunction RNA interference screen for molecular targets in cancer. Nature 441, 106-110. https://doi.org/10.1038/nature04687
- Ngo, V.N., Young, R.M., Schmitz, R., Jhavar, S., Xiao, W., Lim, K.H., Kohlhammer, H., Xu, W., Yang, Y., Zhao, H., et al. (2011). Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115-119. https://doi.org/10.1038/nature09671
- Perkins, N.D. (2007). Integrating cell-signalling pathways with NFkappaB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 49-62. https://doi.org/10.1038/nrm2083
- Popivanova, B.K., Kitamura, K., Wu, Y., Kondo, T., Kagaya, T., Kaneko, S., Oshima, M., Fujii, C., and Mukaida, N. (2008). Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest. 118, 560-570.
- Prasad, S., Ravindran, J., and Aggarwal, B.B. (2010). NF-kappaB and cancer: how intimate is this relationship. Mol. Cell. Biochem. 336, 25-37. https://doi.org/10.1007/s11010-009-0267-2
- Reimann, M., Lee, S., Loddenkemper, C., Dorr, J.R., Tabor, V., Aichele, P., Stein, H., Dorken, B., Jenuwein, T., and Schmitt, C. A. (2010). Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell. 17, 262-272. https://doi.org/10.1016/j.ccr.2009.12.043
- Rosenwald, A., Wright, G., Chan, W.C., Connors, J.M., Campo, E., Fisher, R.I., Gascoyne, R.D., Muller-Hermelink, H.K., Smeland, E.B., Giltnane, J.M., et al. (2002). The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 1937-1947. https://doi.org/10.1056/NEJMoa012914
- Rovillain, E., Mansfield, L., Caetano, C., Alvarez-Fernandez, M., Caballero, O.L., Medema, R.H., Hummerich, H., and Jat, P.S. (2011). Activation of nuclear factor-kappa B signalling promotes cellular senescence. Oncogene 30, 2356-2366. https://doi.org/10.1038/onc.2010.611
- Ryan, K.M., Ernst, M.K., Rice, N.R., and Vousden, K.H. (2000). Role of NF-kappaB in p53-mediated programmed cell death. Nature 404, 892-897. https://doi.org/10.1038/35009130
- Schmitt, C.A. (2007). Cellular senescence and cancer treatment. Biochim. Biophys. Acta 1775, 5-20.
- Schmitt, C.A., Fridman, J.S., Yang, M., Lee, S., Baranov, E., Hoffman, R.M., and Lowe, S.W. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335-346. https://doi.org/10.1016/S0092-8674(02)00734-1
- Schneider, A., Martin-Villalba, A., Weih, F., Vogel, J., Wirth, T., and Schwaninger, M. (1999). NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat. Med. 5, 554-559. https://doi.org/10.1038/8432
-
Seitz, C.S., Lin, Q., Deng, H., and Khavari, P.A. (1998). Alterations in NF-
$\kappa{B}$ function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-$\kappa{B}$ . Proc. Natl. Acad. Sci. USA 95, 2307-2312. https://doi.org/10.1073/pnas.95.5.2307 - Sen, R., and Baltimore, D. (1986). Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705-716. https://doi.org/10.1016/0092-8674(86)90346-6
- Sheehy, A.M., and Schlissel, M.S. (1999). Overexpression of RelA causes G1 arrest and apoptosis in a Pro-B cell line. J. Biol. Chem. 274, 8708-8716. https://doi.org/10.1074/jbc.274.13.8708
-
Staudt, L.M. (2010). Oncogenic activation of NF-
$\kappa{B}$ . Cold Spring Harb Perspect Biol. 2, a000109. - Stehlik, C., de Martin. R., Kumabashiri, I., Schmid, J.A., Binder, B.R., and Lipp, J. (1998). Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J. Exp. Med. 188, 211-216. https://doi.org/10.1084/jem.188.1.211
- Sun, L., Deng, L., Ea, C.K., Xia, Z.P., and Chen, Z.J. (2004). The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289-301. https://doi.org/10.1016/S1097-2765(04)00236-9
- Tamatani, M., Che, Y.H., Matsuzaki, H., Ogawa, S., Okado, H., Miyake, S., Mizuno, T., and Tohyama, M. (1999). Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons. J. Biol. Chem. 274, 8531-8538. https://doi.org/10.1074/jbc.274.13.8531
- te Poele, R.H., Okorokov, A.L., Jardine, L., Cummings, J., and Joel, S.P. (2002). DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62, 1876-1883.
- Tu, S., Bhagat, G., Cui, G., Takaishi, S., Kurt-Jones, E.A., Rickman, B., Betz, K.S., Penz-Oesterreicher, M., Bjorkdahl, O., Fox, J.G., et al. (2008). Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14, 408-419. https://doi.org/10.1016/j.ccr.2008.10.011
-
Wang, C.Y., Mayo, M.W., Korneluk, R.G., Goeddel, D.V., and Baldwin, A.S. Jr. (1998). NF-
$\kappa{B}$ antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680-1683. https://doi.org/10.1126/science.281.5383.1680 -
Wertz, I.E., O'Rourke, K.M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., Wu, P., Wiesmann, C., Baker, R., Boone, D.L., et al. (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-
$\kappa{B}$ signalling. Nature 430, 694-699. https://doi.org/10.1038/nature02794 - Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky, V., Cordon-Cardo, C., and Lowe, S.W. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656-660. https://doi.org/10.1038/nature05529
- Yamamoto, K., Arakawa, T., Ueda, N., and Yamamoto, S. (1995). Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. J. Biol. Chem. 270, 31315-31320. https://doi.org/10.1074/jbc.270.52.31315
-
Yang, J., Splittgerber, R., Yull, F.E., Kantrow, S., Ayers, G.D., Karin, M., and Richmond, A. (2010). Conditional ablation of Ikk
$\beta$ inhibits melanoma tumor development in mice. J. Clin. Invest. 120, 2563-2574. https://doi.org/10.1172/JCI42358 - Zhou, H., Wertz, I., O'Rourke, K., Ultsch, M., Seshagiri, S., Eby, M., Xiao, W., and Dixit, V.M. (2004). Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 427, 167-171. https://doi.org/10.1038/nature02273
- Zhu, L., Fukuda, S., Cordis, G., Das, D.K., and Maulik, N. (2001). Anti-apoptotic protein surviving plays a significant role in tubular morphogenesis of human coronary arteriolar endothelial cells by hypoxic preconditioning. FEBS Lett. 508, 369-374. https://doi.org/10.1016/S0014-5793(01)03084-8
Cited by
- Effects of probucol on cell proliferation in human ovarian cancer cells vol.5, pp.1, 2016, https://doi.org/10.1039/C5TX00088B
- Effect of Pomegranate Hull Extract on Liver Neoplastic Changes in Rats: More than an Antioxidant vol.68, pp.6, 2016, https://doi.org/10.1080/01635581.2016.1192205
- TMPRSS4 promotes invasiveness of human gastric cancer cells through activation of NF-κB/MMP-9 signaling vol.77, 2016, https://doi.org/10.1016/j.biopha.2015.11.002
- Immune System Dysfunction in the Elderly vol.89, pp.1, 2017, https://doi.org/10.1590/0001-3765201720160487
- Elucidation of Altered Pathways in Tumor-Initiating Cells of Triple-Negative Breast Cancer: A Useful Cell Model System for Drug Screening vol.35, pp.8, 2017, https://doi.org/10.1002/stem.2654
- Farnesoid X receptor signal is involved in deoxycholic acid-induced intestinal metaplasia of normal human gastric epithelial cells vol.34, pp.5, 2015, https://doi.org/10.3892/or.2015.4207
- Mutant DD genotype of NFKB1 gene is associated with the susceptibility and severity of coronary artery disease vol.103, 2017, https://doi.org/10.1016/j.yjmcc.2017.01.005
- Translational Horizons in the Tumor Microenvironment: Harnessing Breakthroughs and Targeting Cures vol.35, pp.2, 2015, https://doi.org/10.1002/med.21338
- The role of NF-κB in PARP-inhibitor-mediated sensitization and detoxification of arsenic trioxide in hepatocellular carcinoma cells vol.40, pp.3, 2015, https://doi.org/10.2131/jts.40.349
- Induction of IκB-ζ by Epstein-Barr virus latent membrane protein-1 and CD30 vol.47, pp.6, 2015, https://doi.org/10.3892/ijo.2015.3218
- Metabolomics–Proteomics Combined Approach Identifies Differential Metabolism-Associated Molecular Events between Senescence and Apoptosis vol.16, pp.6, 2017, https://doi.org/10.1021/acs.jproteome.7b00111
- The PPARγ-SETD8 axis constitutes an epigenetic, p53-independent checkpoint on p21-mediated cellular senescence vol.16, pp.4, 2017, https://doi.org/10.1111/acel.12607
- Emerging prognostic markers related to mesenchymal characteristics of poorly differentiated breast cancers vol.37, pp.4, 2016, https://doi.org/10.1007/s13277-015-4361-7
- Investigation of nutriactive phytochemical - gamma-oryzanol in experimental animal models vol.100, pp.4, 2016, https://doi.org/10.1111/jpn.12428
- Cobrotoxin fromNaja naja atraVenom Ameliorates Adriamycin Nephropathy in Rats vol.2015, 2015, https://doi.org/10.1155/2015/450581
- Sorafenib effect on liver neoplastic changes in rats: more than a kinase inhibitor vol.17, pp.2, 2017, https://doi.org/10.1007/s10238-016-0416-3
- PM2.5 obtained from urban areas in Beijing induces apoptosis by activating nuclear factor-kappa B vol.4, pp.1, 2017, https://doi.org/10.1186/s40779-017-0136-3
- UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer vol.17, pp.10, 2016, https://doi.org/10.3390/ijms17101724
- Upregulation of microRNA-181b inhibits CCL18-induced breast cancer cell metastasis and invasion via the NF-κB signaling pathway vol.12, pp.6, 2016, https://doi.org/10.3892/ol.2016.5230
- Anti-inflammatory Activity of Tocotrienols in Age-related Pathologies: A SASPected Involvement of Cellular Senescence vol.20, pp.1, 2018, https://doi.org/10.1186/s12575-018-0087-4
- NF-κB Signaling in Targeting Tumor Cells by Oncolytic Viruses—Therapeutic Perspectives vol.10, pp.11, 2018, https://doi.org/10.3390/cancers10110426
- Exacerbated Apoptosis of Cells Infected with Infectious Bursal Disease Virus upon Exposure to Interferon Alpha vol.92, pp.11, 2018, https://doi.org/10.1128/JVI.00364-18
- NF-κB, inflammation, immunity and cancer: coming of age vol.18, pp.5, 2018, https://doi.org/10.1038/nri.2017.142
- Essential Roles for the Non-Canonical IκB Kinases in Linking Inflammation to Cancer, Obesity, and Diabetes vol.8, pp.2, 2019, https://doi.org/10.3390/cells8020178
- The BCR-ABL/NF-κB signal transduction network: a long lasting relationship in Philadelphia positive Leukemias vol.7, pp.40, 2016, https://doi.org/10.18632/oncotarget.11507
- Diallyl Disulfide (DADS), a Constituent of Garlic, Inactivates NF-κB and Prevents Colitis-Induced Colorectal Cancer by Inhibiting GSK-3β vol.9, pp.7, 2016, https://doi.org/10.1158/1940-6207.capr-16-0044
- Mast cells and histamine are triggering the NF-κB-mediated reactions of adult and aged perilymphatic mesenteric tissues to acute inflammation vol.8, pp.11, 2014, https://doi.org/10.18632/aging.101113
- Regulation of Age-related Decline by Transcription Factors and Their Crosstalk with the Epigenome vol.19, pp.6, 2014, https://doi.org/10.2174/1389202919666180503125850
- KLF5 promotes the tumorigenesis and metastatic potential of thyroid cancer cells through the NF-κB signaling pathway vol.40, pp.5, 2014, https://doi.org/10.3892/or.2018.6687
- Protective effect and molecular mechanism of liquiritin on oxybuprocaine-induced apoptosis of human corneal endothelial cells vol.15, pp.4, 2018, https://doi.org/10.3892/etm.2018.5860
- Senescence-related deterioration of intercellular junctions in the peritoneal mesothelium promotes the transmesothelial invasion of ovarian cancer cells vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-44123-4
- MicroRNA-199a-5p functions as a tumor suppressor in oral squamous cell carcinoma via targeting the IKKβ/NF-κB signaling pathway vol.43, pp.4, 2014, https://doi.org/10.3892/ijmm.2019.4083
- lncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence vol.11, pp.17, 2014, https://doi.org/10.18632/aging.102240
- Stem Cell Aging in Lifespan and Disease: A State-of-the-Art Review vol.15, pp.None, 2020, https://doi.org/10.2174/1574888x15666200213105155
- Paeonol Suppresses Proliferation and Motility of Non-Small-Cell Lung Cancer Cells by Disrupting STAT3/NF-κB Signaling vol.11, pp.None, 2020, https://doi.org/10.3389/fphar.2020.572616
- Cellular Senescence in the Lung: The Central Role of Senescent Epithelial Cells vol.21, pp.9, 2014, https://doi.org/10.3390/ijms21093279
- NFKB1 gene rs28362491 ins/del variation is associated with higher susceptibility to myocardial infarction in a Chinese Han population vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-72877-9
- The emerging role of cellular senescence in complications of COVID-19 vol.28, pp.None, 2014, https://doi.org/10.1016/j.ctarc.2021.100399
- The Repression of the HMGB1-TLR4-NF-κB Signaling Pathway by Safflower Yellow May Improve Spinal Cord Injury vol.15, pp.None, 2014, https://doi.org/10.3389/fnins.2021.803885
- NF-κB and Human Cancer: What Have We Learned over the Past 35 Years? vol.9, pp.8, 2014, https://doi.org/10.3390/biomedicines9080889
- LIM mineralization protein‑1 inhibits IL‑1β‑induced human chondrocytes injury by altering the NF‑κB and MAPK/JNK pathways vol.23, pp.1, 2014, https://doi.org/10.3892/etm.2021.10983
- NF‐κB signaling in inflammation and cancer vol.2, pp.4, 2014, https://doi.org/10.1002/mco2.104