DOI QR코드

DOI QR Code

Temperature Prediction for the Wastewater Treatment Process using Heat Transfer Model

열전달 모델을 이용한 폐수처리공정의 온도 예측

  • Rho, Seung-Baik (Department of Chemical Engineering, Keimyung University)
  • 노승백 (계명대학교 화학공학과)
  • Received : 2014.01.27
  • Accepted : 2014.03.06
  • Published : 2014.03.31

Abstract

The temperature change in the biologically activated sludge wastewater treatment process was predicted using the heat transfer model. All incoming and outgoing heats in wastewater treatment processes were considered. Incoming heats included the solar radiation heat, the heat from impeller mechanical energy, and the biochemical heat in the aeration process. Outgoing heats comprised the radiation heat from the waste itself, the heat of vaporization and surface aeration, the wind convection heat and the conduction heat between the surface and aerator. All heats were used as an input to the existing empirical heat transfer model. The heat transfer model of wastewater treatment processes is presented also. To test the validity of the heat transfer model, the operating conditions of the actual wastewater treatment plant were used. The temperatures were compared with the model temperatures. Model predictions were consistent within the $1.0^{\circ}C$.

본 논문은 생물학적 활성오니 폐수처리공정의 열전달 모델식을 제시하여 공정의 온도를 예측하였다. 열전달 모델은 폐수처리공정에 들어오고 나가는 모든 열을 고려하였다. 공정에 들어오는 열은 태양 복사열과 포기조 impeller의 기계적 에너지의 변환열, 포기조 내의 생화학 반응열이다. 공정에서 나가는 열은 폐수 자체의 복사열, 포기작용에 의한 증발열과 포기조 표면으로 나가는 전도열, 바람에 의한 대류열, 포기조와 지표면과의 전도열을 고려하였다. 들어오고 나가는 모든 열은 기존의 열전달 경험식을 적용하였다. 적용된 경험식으로 폐수처리장 공정의 열전달 모델식을 제시하였다. 모델식으로 실제 폐수처리공정의 온도를 예측하였으며, 모델식 예측치와 실제값이 $1.0^{\circ}C$ 이내로 일치하였다.

Keywords

References

  1. Argaman, Y.; Adams Jr., CE., "Comprehensive Temperature Model for Aerated Biological Systems", Prog. Water TechnoL, 9, 397-409, 1977.
  2. Wells, S. A., "Effect of Winter Heat Loss on Treatment Plant Efficiency", J. Water Pollut. Cont. Fed., 62(1), 34-39, 1990.
  3. Raphael, J. W. "Prediction of temperature in rivers and reservoirs", J. Power Div., ASCE 88, 157-166, 1962.
  4. Thackston, E. L. and Parker, F. L., "Geographical Influence upon Cooling Pond", J. Water Pollution Cont. Fed., 44, 7-12, 1972.
  5. Novotny, V. and Krenkel, P. A., "Evaporation and Heat Balance in Aerated Basins", AIChE Symposium Series, 70(136), 150-159, 1973.
  6. Talati, S. N. and Stenstrom, M. K, "Aeration Basin Heat Loss", J. Environ. Eng. ASCE, 116 (1), 70-86, 1990. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9372(1990)116:1(70)
  7. la Cour Jansen, J., Kristensen, G. H. and Laursen, K. D., "Activated Sludge Nitrification in Temperature Climate", Water Sei. Technol, 25(4-5), 177-184, 1992.
  8. Dürrenmatt, D. J. and Wanner, O., "A mathematical model to predict the effect of heat recovery on the wastewater temperature in sewers", Water Research, 48(1), 548-558, 2014. DOI: http://dx.doi.org/10.1016/j.watres.2013.10.017
  9. Choi, Y. S. and Yoo, D. W., "Temperature Effects on Nutrient Removal Process", Korean Soc. of Water Quality, 1997(1), B-1, 1997
  10. Kang, Y. H., "Temperature effect on the perforamnce of biological nutrients removal systen combining attached at suspended growth", MS Thesis, Korea Univ., 2004.
  11. The Korea Meteorological Administration, South Korea, Monthly Meteorological Summary, http://www.kma.go.kr/weather/climate/data_monthly.jsp, (accessed Dec., 10, 2013)