DOI QR코드

DOI QR Code

하천을 횡단하는 도수관로의 최적 매설구간 선정을 위한 흐름 및 하상변동 수치모의

Numerical Analysis of Flow and Bed Changes for Selecting Optimized Section of Buried Water Pipeline Crossing the River

  • 장은경 (한국건설기술연구원 하천해안연구실) ;
  • 지운 (한국건설기술연구원 하천해안연구실)
  • Jang, Eun-Kyung (River and Coastal Research Division, Water Resources & Environment Research Department, Korea Institute of Construction Technology) ;
  • Ji, Un (River and Coastal Research Division, Water Resources & Environment Research Department, Korea Institute of Construction Technology)
  • 투고 : 2014.01.14
  • 심사 : 2014.03.06
  • 발행 : 2014.03.31

초록

하천을 횡단하는 관로를 매설할 경우 하상변동으로 인해 관로가 드러나는 사고가 발생할 수 있으며 이를 방지하기 위해서는 안전한 매설경로를 분석할 필요가 있다. 본 연구에서는 금강을 횡단하는 도수관로의 안전한 매설구간 선정을 위해 2차원 수치모형을 이용하여 흐름해석 및 하상변동 분석을 수행하였다. 20년 빈도 홍수량을 적용한 모의 결과, 전반적으로 하상이 퇴적되는 것으로 나타났으나 교각의 영향을 받는 구간에서는 관로 매설 깊이 2 m 이상의 침식이 발생하는 것으로 나타났다. 극한 호우 사상에서도 교각 상류와 근접한 부근에서 관로매설 위치까지 침식이 발생하는 것으로 나타났다. 따라서 교각위치에서 상류 약 140 m 까지는 교각의 영향으로 하상침식이 매설된 관로에 영향을 미칠 것으로 예상된다. 상류 150 m 이후에 위치한 관로 횡단경로들은 하상 침식에 대해 상대적으로 안정적일 것으로 판단되어 안전을 고려하여 이를 도수관로 횡단경로의 최적구간으로 선정하였다.

A water pipeline buried under the riverbed could be exposed by bed erosion, therefore safe crossing sections should be analyzed for preventing damages due to the exposure of pipelines. In this study, flow and bed changes have been simulated using a two-dimensional numerical model for selecting the optimized section of pipeline crossing in the Geum River. As a result of simulation with the 20-year recurrence flood, sediment deposition has been distributed overall in the channel and bed erosion over 2 m has occurred near bridge piers. For the extreme flood simulation, the channel bed near the bridge piers has been eroded down to the buried depth. Therefore, within 140 m upstream of the bridge piers, bed erosion affects a buried pipeline in safety due to bridge pier effects and the crossing section over 150 m upstream of bridge piers is selected as a safe zone of a water pipeline.

키워드

참고문헌

  1. H. S. Oh, H. J. Lee, K. H. Kim, "Local Scour Properties Below Submarine Pipeline in Waves", Journal of Korean Society of Civil Engineering, Vol. 22, No. 4-B, pp. 539-549, 2002.
  2. K. H. Kim, H. H. Kim, H. S. Oh, J. H. Yeum, "Characteristics of the Local Scour around Submarine Imbeded Pipelines due to Waves", Journal of Korean Society of Coastal and Ocean Enginners, Vol. 17, No. 2, pp. 106-118, 2005.
  3. S. D. Kim, K. K. Ahn, H. J. Lee, S. M. Lee, "Characteristics of Scour around Pipeline in Current", Journal of Korean Geo-environmental Society, Vol. 10, No. 7, pp. 117-123, 2009.
  4. A. K. Arya, B. Shingan, "Scour-Mechanism, Detection and Mitigation for Subsea Pipeline Integrity", International Journal of Engineering Research & Technology, Vol. 1, No. 3, pp. 1-14, 2012. https://doi.org/10.15623/ijret.2012.0101001
  5. F. A. Van Beek, H. G. Wind, "Numerical Modelling of Erosion and Sedimentation Around Offshore Pipelines", Elsevier Science Publishers B. V., Vol. 14, pp. 107-128, 1990. DOI: http://dx.doi.org/10.1016/0378-3839(90)90013-M
  6. S. P. Kjeldsen, O. Gjorsvik, K. G. Bringaker, J. Jacobsen, "Local scour near offshore pipelines", 2nd Int. Conf. Port and Ocean Engineering under Arctic Conditions, Reykjavik. Univ. Iceland, Dep. Eng. Sci., pp. 308-331, 1973.
  7. U. Ji, W. K. Yeo, S. W. Han, "Numerical Analysis for Bed Changes due to Sediment Transport Capacity Formulas and Sediment Transport Modes at the Upstream Approached Channel of the Nakdong River Estuary Barrage", Journal of Korea Water Resources Association, Vol. 43, No. 6, pp. 543-557, 2010. DOI: http://dx.doi.org/10.3741/JKWRA.2010.43.6.543
  8. J. W. Lee, M. S. Lee, I. K. Jung, "Stream Type Classification and 2-Dimensional Hydraulic Characteristics and Bed Change in Anseongcheon Streams and Tributaries", Journal of the Korea Association of Geographic Information Studies, Vol. 14, No. 4, pp. 77-97, 2011. https://doi.org/10.11108/kagis.2011.14.4.077
  9. J. M. Ahn, S. Lyu, "Analysis of Flow and Bed Change on Hydraulic Structure using CCHE2D :Focusing on Changnyong-Haman", Journal of Korea Water Resources Association, Vol. 46, No. 7, pp. 707-717, 2013. DOI: http://dx.doi.org/10.3741/JKWRA.2013.46.7.707
  10. P. Ackers, W. R. White, "Sediment transport: A new approach and analysis", Journal of Hydraulics Division, 99(HY11), 1973.
  11. F. A. Engelund, E. Hansen, Monograph on sediment transport in alluvial streams, Teknisk Forlag, Denmark, 1967.
  12. W. Wu, S. S. Y. Wang, Y. Jia, "Nonuniform sediment transport in alluvial river", Journal of Hydraulic Research, Vol. 38, No. 6, pp. 427-434, 2000. DOI: http://dx.doi.org/10.1080/00221680009498296
  13. J. Garbrecht, R. A. Kuhnle, C. V. Alonso, "A sediment transport formulation for large channel networks", Journal of Soil and Water Conservation, Vol. 50, No. 5, pp. 517-579, 1995.
  14. MOLIT, River Master Plan Report of Guem River Basin, Minister of Land, Infrastructure and Transport, 2011
  15. MOLIT, Hydrological Annual Repot in 2011, Minister of Land, Infrastructure and Transport, 2012.
  16. C. V. Alonso, "Selecting a Formula to Estimate Sediment Transport: A New Approach and Analysis", Journal of the Hydraulics Division, 99(HY11), 1980.
  17. W. R. Brownile, Prediction of Flow Depth and Sediment Discharge in Open Channels, W. M. Keck Laboratory of Hydraulics and Water Resources, Report No. KH-R-43A, California Institute of Technology, Pasadena, Calif., Nov., 1981a.
  18. L. C. van Rijn, "Sediment Transport, Part II: Suspended Load Transport", Journal of the Hydraulics Division, Vol. 110, No. 11, 1984.
  19. H. H. Jr. Stevens, C. T. Yang, Summary and Use of Selected Sediment Transport Formulas, Water Resources Investigation Report 89-4026, USGS, Washington, D. C., 1989.
  20. W. R. Brownile, Compilation of Alluvial Channel Data: Laboratory and Field, W. M. Keck Laboratory of Hydraulics and Water Resources, Report No. KH-R-43B, California Institute of Technology, Pasadena, Calif., Nov., 1981b.
  21. C. T. Yang, "Unit Stream Power Equation for Total Load". Journal of Hydrology, Vol. 40, pp. 123-138, 1979. DOI: http://dx.doi.org/10.1016/0022-1694(79)90092-1